The Variational Principles of Mechanics

The Variational Principles of Mechanics PDF Author: Lánczos Kornél
Publisher:
ISBN:
Category :
Languages : en
Pages : 307

Get Book Here

Book Description


Variational Principles of Continuum Mechanics

Variational Principles of Continuum Mechanics PDF Author: Victor Berdichevsky
Publisher: Springer Science & Business Media
ISBN: 354088467X
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.

Variational Methods in Theoretical Mechanics

Variational Methods in Theoretical Mechanics PDF Author: J.T. Oden
Publisher: Springer Science & Business Media
ISBN: 3642963129
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed throughout the book. We are indebted to Professor Jim Douglas of the University of Chicago, who read an earlier version of the manuscript and whose detailed suggestions were extremely helpful in preparing the final draft. He also gratefully acknowledge that much of our own research work on variational theory was supported by the U.S. Air Force Office of Scientific Research. He are indebted to Mr. Ming-Goei Sheu for help in proofreading. Finally, we wish to express thanks to Mrs. Marilyn Gude for her excellent and pains taking job of typing the manuscript. J. T. ODEN J. N. REDDY Table of Contents PREFACE 1. INTRODUCTION 1.1 The Role of Variational Theory in Mechanics. 1 1.2 Some Historical Comments ......... . 2 1.3 Plan of Study ............... . 5 7 2. MATHEMATICAL FOUNDATIONS OF CLASSICAL VARIATIONAL THEORY 7 2.1 Introduction . . . . . . . .

Solution of Variational Inequalities in Mechanics

Solution of Variational Inequalities in Mechanics PDF Author: Ivan Hlavacek
Publisher: Springer Science & Business Media
ISBN: 1461210488
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The idea for this book was developed in the seminar on problems of con tinuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathe matical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational in equalities theory are the topics of the well-known monograph by G. Du vaut and J. L. Lions, Les iniquations en micanique et en physique (1972).

Variational and Quasi-Variational Inequalities in Mechanics

Variational and Quasi-Variational Inequalities in Mechanics PDF Author: Alexander S. Kravchuk
Publisher: Springer Science & Business Media
ISBN: 1402063776
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.

Variational Models and Methods in Solid and Fluid Mechanics

Variational Models and Methods in Solid and Fluid Mechanics PDF Author: Francesco dell'Isola
Publisher: Springer Science & Business Media
ISBN: 3709109833
Category : Technology & Engineering
Languages : en
Pages : 363

Get Book Here

Book Description
F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.

Energy and Variational Methods in Applied Mechanics

Energy and Variational Methods in Applied Mechanics PDF Author: J. N. Reddy
Publisher: Wiley-Interscience
ISBN: 9780471896739
Category : Science
Languages : en
Pages : 560

Get Book Here

Book Description
A practical introduction to the use of the finite-element method and variational methods to solve engineering problems about beams, bars, torsion, and plane elasticity. Includes a concise section on composite-material laminated plates and shells. Contains numerous examples, exercises, problems, and references.

Variational Principles in Physics

Variational Principles in Physics PDF Author: Jean-Louis Basdevant
Publisher: Springer Science & Business Media
ISBN: 0387377484
Category : Science
Languages : en
Pages : 191

Get Book Here

Book Description
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics PDF Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Solid Mechanics

Solid Mechanics PDF Author: Clive L. Dym
Publisher: Springer Science & Business Media
ISBN: 1461460344
Category : Science
Languages : en
Pages : 698

Get Book Here

Book Description
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.