Variational Principles and Free-Boundary Problems

Variational Principles and Free-Boundary Problems PDF Author: Avner Friedman
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 728

Get Book Here

Book Description
A comprehensive treatment of variational methods and their applications to free boundary problems. Explains important developments in the field and offers background mathematics. Text includes problems at the end of each section and an extensive bibliography.

Variational Principles and Free-Boundary Problems

Variational Principles and Free-Boundary Problems PDF Author: Avner Friedman
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 728

Get Book Here

Book Description
A comprehensive treatment of variational methods and their applications to free boundary problems. Explains important developments in the field and offers background mathematics. Text includes problems at the end of each section and an extensive bibliography.

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems PDF Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
ISBN: 1461493234
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Nonsmooth Variational Problems and Their Inequalities

Nonsmooth Variational Problems and Their Inequalities PDF Author: Siegfried Carl
Publisher: Springer Science & Business Media
ISBN: 038746252X
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.

The obstacle problem

The obstacle problem PDF Author: Luis Angel Caffarelli
Publisher: Edizioni della Normale
ISBN: 9788876422492
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

Regularity of Free Boundaries in Obstacle-Type Problems

Regularity of Free Boundaries in Obstacle-Type Problems PDF Author: Arshak Petrosyan
Publisher: American Mathematical Soc.
ISBN: 0821887947
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems PDF Author: Dumitru Motreanu
Publisher: Springer Science & Business Media
ISBN: 9781402013850
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.

Boundary and Eigenvalue Problems in Mathematical Physics

Boundary and Eigenvalue Problems in Mathematical Physics PDF Author: Hans Sagan
Publisher: Courier Corporation
ISBN: 0486150925
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Well-known text uses a few basic concepts to solve such problems as the vibrating string, vibrating membrane, and heat conduction. Problems and solutions. 31 illustrations.

Variational and Extremum Principles in Macroscopic Systems

Variational and Extremum Principles in Macroscopic Systems PDF Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0080456146
Category : Technology & Engineering
Languages : en
Pages : 810

Get Book Here

Book Description
Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin's maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. - A unique multidisciplinary synthesis of variational and extremum principles in theory and application - A comprehensive review of current and past achievements in variational formulations for macroscopic processes - Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics PDF Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Variational Principles of Continuum Mechanics with Engineering Applications

Variational Principles of Continuum Mechanics with Engineering Applications PDF Author: V. Komkov
Publisher: Springer Science & Business Media
ISBN: 9789027726391
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.