Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop

Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop PDF Author: Antonio Ambrosetti
Publisher: World Scientific
ISBN: 9814548340
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
In this volume, various ideas about Hamiltonian dynamics were discussed. Particular emphasis was placed on mechanical systems with singular potentials (such as the N-Body Newtonian problem) and on their special features, although important aspects of smooth dynamics were also discussed, from both the local point of view and the point of view of global analysis.

Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop

Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop PDF Author: Antonio Ambrosetti
Publisher: World Scientific
ISBN: 9814548340
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
In this volume, various ideas about Hamiltonian dynamics were discussed. Particular emphasis was placed on mechanical systems with singular potentials (such as the N-Body Newtonian problem) and on their special features, although important aspects of smooth dynamics were also discussed, from both the local point of view and the point of view of global analysis.

Mathematical Aspects of Classical and Celestial Mechanics

Mathematical Aspects of Classical and Celestial Mechanics PDF Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3540489266
Category : Mathematics
Languages : en
Pages : 505

Get Book Here

Book Description
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.

Nonlinear Partial Differential Equations And Applications: Proceedings Of The Conference

Nonlinear Partial Differential Equations And Applications: Proceedings Of The Conference PDF Author: Boling Guo
Publisher: World Scientific
ISBN: 9814544264
Category :
Languages : en
Pages : 267

Get Book Here

Book Description
Contents: Direct and Inverse Diffraction by Periodic Structures (G Bao)Weak Flow of H-Systems (Y-M Chen)Strongly Compact Attractor for Dissipative Zakharov Equations (B-L Guo et al.)C∞-Solutions of Generalized Porous Medium Equations (M Ôtani & Y Sugiyama)Cauchy Problem for Generalized IMBq Equation (G-W Chen & S-B Wang)Inertial Manifolds for a Nonlocal Kuramoto–Sivashinsky Equation (J-Q Duan et al.)Weak Solutions of the Generalized Magnetic Flow Equations (S-H He & Z-D Dai)The Solution of Hammerstein Integral Equation Without Coercive Conditions (Y-L Shu)Global Behaviour of the Solution of Nonlinear Forest Evolution Equation (D-J Wang)Uniqueness of Generalized Solutions for Semiconductor Equations (J-S Xing & Y Hu)On the Vectorial Hamilton–Jacobi System (B-S Yan)An Integrable Hamiltonian System Associated with cKdV Hierarchy (J-S Zhang et al.)and other papers Readership: Mathematicians. Keywords:Diffraction;Weak Flow;Zakharov Equations;Porous Medium Equations;Cauchy Problem;IMBq Equation;Kuramoto-Sivashinsky Equation;Magnetic Flow Equations;Hammerstein Integral Equation;Nonlinear Forest Evolution Equation;Uniqueness;Generalized Solutions;Semiconductor Equations;Hamilton–Jacobi System;Hamiltonian System;cKdV Hierarchy

Critical Point Theory

Critical Point Theory PDF Author: Martin Schechter
Publisher: Springer Nature
ISBN: 303045603X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1518

Get Book Here

Book Description


Non-commuting Variations in Mathematics and Physics

Non-commuting Variations in Mathematics and Physics PDF Author: Serge Preston
Publisher: Springer
ISBN: 3319283235
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.

Directory of Published Proceedings

Directory of Published Proceedings PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 462

Get Book Here

Book Description


Physics Letters

Physics Letters PDF Author:
Publisher:
ISBN:
Category : Nuclear physics
Languages : en
Pages : 506

Get Book Here

Book Description


Lagrangian and Hamiltonian Methods for Nonlinear Control 2003

Lagrangian and Hamiltonian Methods for Nonlinear Control 2003 PDF Author: A Astolfi
Publisher: Elsevier
ISBN: 9780080442785
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This is the second of a series of IFAC Workshops initiated in 2000. The first one chaired and organized by Profs. N. Leonard and R. Ortega, was held in Princeton in March 2000. This proceedings volume looks at the role-played by Lagrangian and Hamiltonian methods in disciplines such as classical mechanics, quantum mechanics, fluid dynamics, electrodynamics, celestial mechanics and how such methods can be practically applied in the control community. *Presents and illustrates new approaches to nonlinear control that exploit the Lagrangian and Hamiltonian structure of the system to be controlled *Highlights the important role of Lagrangian and Hamiltonian Structures as design methods

Integral Methods in Science and Engineering

Integral Methods in Science and Engineering PDF Author: Christian Constanda
Publisher: CRC Press
ISBN: 1000724484
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells. Volume 1 covers Analytic Methods.