Author: Sybil Derrible
Publisher: MIT Press
ISBN: 0262356759
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Urban Engineering for Sustainability
Author: Sybil Derrible
Publisher: MIT Press
ISBN: 0262356759
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Publisher: MIT Press
ISBN: 0262356759
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Urban Engineering for Sustainability
Author: Sybil Derrible
Publisher: MIT Press
ISBN: 0262043440
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Publisher: MIT Press
ISBN: 0262043440
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Pathways to Urban Sustainability
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030944456X
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
Cities have experienced an unprecedented rate of growth in the last decade. More than half the world's population lives in urban areas, with the U.S. percentage at 80 percent. Cities have captured more than 80 percent of the globe's economic activity and offered social mobility and economic prosperity to millions by clustering creative, innovative, and educated individuals and organizations. Clustering populations, however, can compound both positive and negative conditions, with many modern urban areas experiencing growing inequality, debility, and environmental degradation. The spread and continued growth of urban areas presents a number of concerns for a sustainable future, particularly if cities cannot adequately address the rise of poverty, hunger, resource consumption, and biodiversity loss in their borders. Intended as a comparative illustration of the types of urban sustainability pathways and subsequent lessons learned existing in urban areas, this study examines specific examples that cut across geographies and scales and that feature a range of urban sustainability challenges and opportunities for collaborative learning across metropolitan regions. It focuses on nine cities across the United States and Canada (Los Angeles, CA, New York City, NY, Philadelphia, PA, Pittsburgh, PA, Grand Rapids, MI, Flint, MI, Cedar Rapids, IA, Chattanooga, TN, and Vancouver, Canada), chosen to represent a variety of metropolitan regions, with consideration given to city size, proximity to coastal and other waterways, susceptibility to hazards, primary industry, and several other factors.
Publisher: National Academies Press
ISBN: 030944456X
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
Cities have experienced an unprecedented rate of growth in the last decade. More than half the world's population lives in urban areas, with the U.S. percentage at 80 percent. Cities have captured more than 80 percent of the globe's economic activity and offered social mobility and economic prosperity to millions by clustering creative, innovative, and educated individuals and organizations. Clustering populations, however, can compound both positive and negative conditions, with many modern urban areas experiencing growing inequality, debility, and environmental degradation. The spread and continued growth of urban areas presents a number of concerns for a sustainable future, particularly if cities cannot adequately address the rise of poverty, hunger, resource consumption, and biodiversity loss in their borders. Intended as a comparative illustration of the types of urban sustainability pathways and subsequent lessons learned existing in urban areas, this study examines specific examples that cut across geographies and scales and that feature a range of urban sustainability challenges and opportunities for collaborative learning across metropolitan regions. It focuses on nine cities across the United States and Canada (Los Angeles, CA, New York City, NY, Philadelphia, PA, Pittsburgh, PA, Grand Rapids, MI, Flint, MI, Cedar Rapids, IA, Chattanooga, TN, and Vancouver, Canada), chosen to represent a variety of metropolitan regions, with consideration given to city size, proximity to coastal and other waterways, susceptibility to hazards, primary industry, and several other factors.
Urban Sustainability Through Environmental Design
Author: Kevin Thwaites
Publisher: Taylor & Francis
ISBN: 1134157681
Category : Architecture
Languages : en
Pages : 201
Book Description
Urban Sustainability Through Environmental Design provides the analytical tools and practical methodologies that can be employed for sustainable and long-term solutions to the design and management of urban environments.
Publisher: Taylor & Francis
ISBN: 1134157681
Category : Architecture
Languages : en
Pages : 201
Book Description
Urban Sustainability Through Environmental Design provides the analytical tools and practical methodologies that can be employed for sustainable and long-term solutions to the design and management of urban environments.
Engineering for Sustainable Communities
Author: William Edward Kelly
Publisher:
ISBN: 9780784414811
Category : Electronic books
Languages : en
Pages : 466
Book Description
Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
Publisher:
ISBN: 9780784414811
Category : Electronic books
Languages : en
Pages : 466
Book Description
Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
Nature Based Strategies for Urban and Building Sustainability
Author: Gabriel Perez
Publisher: Butterworth-Heinemann
ISBN: 0128123249
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Nature Based Strategies for Urban and Building Sustainability reviews the current state-of-the-art on the topic. In the introduction, the editors review the fundamental concepts of nature elements in the built environment, along with the strategies that are necessary for their inclusion in buildings and cities. Part One describes strategies for the urban environment, discussing urban ecosystems and ecosystem services, while Part Two covers strategies and technologies, including vertical greening systems, green roofs and green streets. Part Three covers the quantitative benefits, results, and issues and challenges, including energy performances and outdoor comfort, air quality improvement, acoustic performance, water management and biodiversity. - Provides an overview of the different strategies available to integrate nature in the built environment - Presents the current state of technology concerning systems and methodologies on how to incorporate nature in buildings and cities - Features the latest research results on operation and ecosystem services - Covers both established and new designs, including those still in the experimental stage
Publisher: Butterworth-Heinemann
ISBN: 0128123249
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Nature Based Strategies for Urban and Building Sustainability reviews the current state-of-the-art on the topic. In the introduction, the editors review the fundamental concepts of nature elements in the built environment, along with the strategies that are necessary for their inclusion in buildings and cities. Part One describes strategies for the urban environment, discussing urban ecosystems and ecosystem services, while Part Two covers strategies and technologies, including vertical greening systems, green roofs and green streets. Part Three covers the quantitative benefits, results, and issues and challenges, including energy performances and outdoor comfort, air quality improvement, acoustic performance, water management and biodiversity. - Provides an overview of the different strategies available to integrate nature in the built environment - Presents the current state of technology concerning systems and methodologies on how to incorporate nature in buildings and cities - Features the latest research results on operation and ecosystem services - Covers both established and new designs, including those still in the experimental stage
Enhancing Urban Sustainability with Data, Modeling, and Simulation
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309494117
Category : Technology & Engineering
Languages : en
Pages : 109
Book Description
On January 30-31, 2019 the Board on Mathematical Sciences and Analytics, in collaboration with the Board on Energy and Environmental Systems and the Computer Science and Telecommunications Board, convened a workshop in Washington, D.C. to explore the frontiers of mathematics and data science needs for sustainable urban communities. The workshop strengthened the emerging interdisciplinary network of practitioners, business leaders, government officials, nonprofit stakeholders, academics, and policy makers using data, modeling, and simulation for urban and community sustainability, and addressed common challenges that the community faces. Presentations highlighted urban sustainability research efforts and programs under way, including research into air quality, water management, waste disposal, and social equity and discussed promising urban sustainability research questions that improved use of big data, modeling, and simulation can help address. This publication summarizes the presentation and discussion of the workshop.
Publisher: National Academies Press
ISBN: 0309494117
Category : Technology & Engineering
Languages : en
Pages : 109
Book Description
On January 30-31, 2019 the Board on Mathematical Sciences and Analytics, in collaboration with the Board on Energy and Environmental Systems and the Computer Science and Telecommunications Board, convened a workshop in Washington, D.C. to explore the frontiers of mathematics and data science needs for sustainable urban communities. The workshop strengthened the emerging interdisciplinary network of practitioners, business leaders, government officials, nonprofit stakeholders, academics, and policy makers using data, modeling, and simulation for urban and community sustainability, and addressed common challenges that the community faces. Presentations highlighted urban sustainability research efforts and programs under way, including research into air quality, water management, waste disposal, and social equity and discussed promising urban sustainability research questions that improved use of big data, modeling, and simulation can help address. This publication summarizes the presentation and discussion of the workshop.
Urban Retrofitting for Sustainability
Author: Tim Dixon
Publisher: Routledge
ISBN: 1317911938
Category : Architecture
Languages : en
Pages : 305
Book Description
With a foreword from Paul King, Chief Executive, UK Green Building Council and Chairman, Zero Carbon Hub As concerns over climate change and resource constraints grow, many cities across the world are trying to achieve a low carbon transition. Although new zero carbon buildings are an important part of the story, in existing cities the transformation of the current building stock and urban infrastructure must inevitably form the main focus for transitioning to a low carbon and sustainable future by 2050. Urban Retrofitting for Sustainability brings together interdisciplinary research contributions from leading international experts to focus on key issues such as systems innovation, financing tools, governance, energy, and water management. The chapters consider not only the knowledge and technical tools available, but looks forward to how they can be implemented in real cities by 2050.
Publisher: Routledge
ISBN: 1317911938
Category : Architecture
Languages : en
Pages : 305
Book Description
With a foreword from Paul King, Chief Executive, UK Green Building Council and Chairman, Zero Carbon Hub As concerns over climate change and resource constraints grow, many cities across the world are trying to achieve a low carbon transition. Although new zero carbon buildings are an important part of the story, in existing cities the transformation of the current building stock and urban infrastructure must inevitably form the main focus for transitioning to a low carbon and sustainable future by 2050. Urban Retrofitting for Sustainability brings together interdisciplinary research contributions from leading international experts to focus on key issues such as systems innovation, financing tools, governance, energy, and water management. The chapters consider not only the knowledge and technical tools available, but looks forward to how they can be implemented in real cities by 2050.
Sustainability Science and Engineering
Author: Martin A. Abraham
Publisher: Elsevier
ISBN: 0080481272
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Publisher: Elsevier
ISBN: 0080481272
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Metropolitan Sustainability
Author: F Zeman
Publisher: Elsevier
ISBN: 085709646X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Global populations have grown rapidly in recent decades, leading to ever increasing demands for shelter, resources, energy and utilities. Coupled with the worldwide need to achieve lower impact buildings and conservation of resources, the need to achieve sustainability in urban environments has never been more acute. This book critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability, and assist nations in meeting the needs of their growing urban populations.Part one introduces key issues related to metropolitan sustainability, including the use of both urban metabolism and benefit cost analysis. Part two focuses on urban land use and the environmental impact of the built environment. The urban heat island effect, redevelopment of brownfield sites and urban agriculture are discussed in depth, before part three goes on to explore urban air pollution and emissions control. Urban water resources, reuse and management are explored in part four, followed by a study of urban energy supply and management in part five. Solar, wind and bioenergy, the role of waste-to-energy systems in the urban infrastructure, and smart energy for cities are investigated. Finally, part six considers sustainable urban development, transport and planning.With its distinguished editor and international team of expert contributors, Metropolitan sustainability is an essential resource for low-impact building engineers, sustainability consultants and architects, town and city planners, local/municipal authorities, and national and non-governmental bodies, and provides a thorough overview for academics of all levels in this field. - Critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability - Will assist nations in meeting the needs of their growing urban populations - Chapters discuss urban land use, the environmental impact of the build environment, the urban heat island effect, urban air pollution and emissions control, among other topics
Publisher: Elsevier
ISBN: 085709646X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Global populations have grown rapidly in recent decades, leading to ever increasing demands for shelter, resources, energy and utilities. Coupled with the worldwide need to achieve lower impact buildings and conservation of resources, the need to achieve sustainability in urban environments has never been more acute. This book critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability, and assist nations in meeting the needs of their growing urban populations.Part one introduces key issues related to metropolitan sustainability, including the use of both urban metabolism and benefit cost analysis. Part two focuses on urban land use and the environmental impact of the built environment. The urban heat island effect, redevelopment of brownfield sites and urban agriculture are discussed in depth, before part three goes on to explore urban air pollution and emissions control. Urban water resources, reuse and management are explored in part four, followed by a study of urban energy supply and management in part five. Solar, wind and bioenergy, the role of waste-to-energy systems in the urban infrastructure, and smart energy for cities are investigated. Finally, part six considers sustainable urban development, transport and planning.With its distinguished editor and international team of expert contributors, Metropolitan sustainability is an essential resource for low-impact building engineers, sustainability consultants and architects, town and city planners, local/municipal authorities, and national and non-governmental bodies, and provides a thorough overview for academics of all levels in this field. - Critically reviews the fundamental issues and applied science, engineering and technology that will enable all cities to achieve a greater level of metropolitan sustainability - Will assist nations in meeting the needs of their growing urban populations - Chapters discuss urban land use, the environmental impact of the build environment, the urban heat island effect, urban air pollution and emissions control, among other topics