Upscaling of Single- and Two-Phase Flow in Reservoir Engineering

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering PDF Author: Hans Bruining
Publisher: CRC Press
ISBN: 1000463273
Category : Technology & Engineering
Languages : en
Pages : 239

Get Book Here

Book Description
- Explains exergy return on exergy invested (ERoEI) so that the reader can make his own judgements as to the costs of recovering energy from conventional and non-conventional resources - Deals with single phase flow aspects (inertia, anisotropy, slip), which admittedly are covered in other textbooks, but out of the contexts of petroleum and environmental engineering. - Gives readers the tools to generate heterogeneous permeability fields (stochastic random fields, marked point processes, Markov chains, which makes it possible to evaluate the effects of heterogeneity on flow - Includes an elaborate section on surface chemistry to understand wetting behaviour and its influence on the relative permeability and capillary pressure behaviour - Derives effective permeabilities and relative permeabilities in upscaled models and illustrates this with examples in EXCEL

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering PDF Author: Hans Bruining
Publisher: CRC Press
ISBN: 1000463303
Category : Technology & Engineering
Languages : en
Pages : 214

Get Book Here

Book Description
This book describes fundamental upscaling aspects of single-phase/two-phase porous media flow for application in petroleum and environmental engineering. Many standard texts have been written about this subject. What distinguishes this work from other available books is that it covers fundamental issues that are frequently ignored but are relevant for developing new directions to extend the traditional approach, but with an eye on application. Our dependence on fossil energy is 80–90% and is only slowly decreasing. Of the estimated 37 (~40) Gton/year, anthropogenic emissions of about 13 Gton/year of carbon dioxide remain in the atmosphere. An Exergy Return on Exergy Invested analysis shows how to obtain an unbiased quantification of the exergy budget and the carbon footprint. Thus, the intended audience of the book learns to quantify his method of optimization of recovery efficiencies supported by spreadsheet calculations. As to single-phase-one component fluid transport, it is shown how to deal with inertia, anisotropy, heterogeneity and slip. Upscaling requires numerical methods. The main application of transient flow is to find the reasons for reservoir impairment. The analysis benefits from solving the porous media flow equations using (numerical) Laplace transforms. The multiphase flow requires the definition of capillary pressure and relative permeabilities. When capillary forces dominate, we have dispersed (Buckley-Leverett flow). When gravity forces dominate, we obtain segregated flow (interface models). Miscible flow is described by a convection-dispersion equation. We give a simple proof that the dispersion coefficient can be approximated by Gelhar's relation, i.e., the product of the interstitial velocity, the variance of the logarithm of the permeability field and a correlation length. The book will appeal mostly to students and researchers of porous media flow in connection with environmental engineering and petroleum engineering.

Upscaling Multiphase Flow in Porous Media

Upscaling Multiphase Flow in Porous Media PDF Author: D.B. Das
Publisher: Springer Science & Business Media
ISBN: 9781402035135
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.

Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems PDF Author: Ivan G. Graham
Publisher: Springer Science & Business Media
ISBN: 3642220614
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Advances in the Study of Fractured Reservoirs

Advances in the Study of Fractured Reservoirs PDF Author: G.H. Spence
Publisher: Geological Society of London
ISBN: 1862393559
Category : Science
Languages : en
Pages : 421

Get Book Here

Book Description
Naturally fractured reservoirs constitute a substantial percentage of remaining hydrocarbon resources; they create exploration targets in otherwise impermeable rocks, including under-explored crystalline basement; and they can be used as geological stores for anthropogenic carbon dioxide. Their complex behaviour during production has traditionally proved difficult to predict, causing a large degree of uncertainty in reservoir development. The applied study of naturally fractured reservoirs seeks to constrain this uncertainty by developing new understanding, and is necessarily a broad, integrated, interdisciplinary topic. This book addresses some of the challenges and advances in knowledge, approaches, concepts, and methods used to characterize the interplay of rock matrix and fracture networks, relevant to fluid flow and hydrocarbon recovery. Topics include: describing, characterizing and identifying controls on fracture networks from outcrops, cores, geophysical data, digital and numerical models; geomechanical influences on reservoir behaviour; numerical modelling and simulation of fluid flow; and case studies of the exploration and development of carbonate, siliciclastic and metamorphic naturally fractured reservoirs.

Reservoir Development

Reservoir Development PDF Author: M. Rafiqul Islam
Publisher: Gulf Professional Publishing
ISBN: 0128204168
Category : Technology & Engineering
Languages : en
Pages : 928

Get Book Here

Book Description
Sustainable Oil and Gas Development Series: Reservoir Development delivers research materials and emerging technologies that conform sustainability in today's reservoirs. Starting with a status of technologies available, the reference describes sustainability as it applies to fracturing fluids, particularly within unconventional reservoirs. Basement reservoirs are discussed along with non-energy applications of fluids. Sustainability considerations for reserve predication are covered followed by risk analysis and scaling guidelines for further field development. Rounding out with conclusions and remaining challenges, Sustainable Oil and Gas Development Series: Reservoir Development gives today and future petroleum engineers a focused and balanced path to strengthen sustainability practices. - Gain insight to more environmentally-friendly protocols for both unconventional and basement reservoirs, including non-energy applications of reservoir fluids - Determine more accurate reserves and keep budgets in line while focusing on emission reduction - Learn from a well-known author with extensive experience in both academia and industry

Reservoir Characterization II

Reservoir Characterization II PDF Author: Lake
Publisher: Academic Press
ISBN: 0323140270
Category : Nature
Languages : en
Pages : 745

Get Book Here

Book Description
Reservoir Characterization II contains the proceedings of the Second International Reservoir Characterization Conference held in Dallas, Texas in June 1989. Contributors focus on the characterization of reservoir processes and cover topics ranging from surface roughness in porous media and reservoir characterization at the mesoscopic scale to shale clast heterogeneities and their effect on fluid flow, permeability patterns in fluvial sandstones, and reservoir management using 3-D seismic data. This book is organized into six sections encompassing 43 chapters. The first 20 chapters deal with reservoir characterization at the microscopic, mesoscopic, and macroscopic scales. Topics include low-contrast resistivity sandstone formations; the use of centrifuge and computer tomography to quantify saturation distribution and capillary pressures; and cross-well seismology as a tool for reservoir geophysics. The chapters that follow deal with reservoir characterization at the megascopic scale; fractal heterogeneity of clastic reservoirs; heterogeneity and effective permeability of porous rocks; and drilling fluid design based on reservoir characterization. A chapter that outlines a procedure for estimating permeability anisotropy with a minipermeameter concludes the book. This book is a valuable resource for students and practitioners of petroleum engineering, geology and geological engineering, petroleum exploration, and geophysics.

Development of Petroleum Reservoirs

Development of Petroleum Reservoirs PDF Author: József Pápay
Publisher: Akademiai Kiads
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 968

Get Book Here

Book Description
This book is exploitation technology oriented and it covers both theory and practice with respect to petroleum reservoirs. Both English language and Russian professional literature are analyzed and elaborated considering interparticle and dual porosity reservoirs. The book consists of four parts. Part I deals with geological principles for recovery processes; Part II deals with classical recovery processes focusing on planning and analysis of technologies; Part III looks at enhanced recovery methods of oil and gas; and Part IV includes different topics necessary for reservoir engineering planning and analysis. A number of examples and practical data are presented which are relevant to technology and recovery efficiency. The book is recommended for students; geologists; reservoir and production engineers who are engaged with crude oil, natural gas, and water production from structures that are located underground; and even for those specialists who deal with gas storage in porous rocks

Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers

Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers PDF Author: Roger M. Slatt
Publisher: Newnes
ISBN: 0444563709
Category : Science
Languages : en
Pages : 688

Get Book Here

Book Description
Reservoir characterization as a discipline grew out of the recognition that more oil and gas could be extracted from reservoirs if the geology of the reservoir was understood. Prior to that awakening, reservoir development and production were the realm of the petroleum engineer. In fact, geologists of that time would have felt slighted if asked by corporate management to move from an exciting exploration assignment to a more mundane assignment working with an engineer to improve a reservoir's performance. Slowly, reservoir characterization came into its own as a quantitative, multidisciplinary endeavor requiring a vast array of skills and knowledge sets. Perhaps the biggest attractor to becoming a reservoir geologist was the advent of fast computing, followed by visualization programs and theaters, all of which allow young geoscientists to practice their computing skills in a highly technical work environment. Also, the discipline grew in parallel with the evolution of data integration and the advent of asset teams in the petroleum industry. Finally, reservoir characterization flourished with the quantum improvements that have occurred in geophysical acquisition and processing techniques and that allow geophysicists to image internal reservoir complexities. - Practical resource describing different types of sandstone and shale reservoirs - Case histories of reservoir studies for easy comparison - Applications of standard, new, and emerging technologies

Reservoir Model Design

Reservoir Model Design PDF Author: Philip Ringrose
Publisher: Springer Nature
ISBN: 3030701638
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types, and for a range of fluid systems – oil, gas and CO2, production and injection, and effects of different mobility ratios. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, displacement mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. The second edition updates the existing sections and adds sections on the following topics: · A new chapter on modelling for CO2 storage · A new chapter on modelling workflows · An extended chapter on fractured reservoir modelling · An extended chapter on multi-scale modelling · An extended chapter on the quantification of uncertainty · A revised section on the future of modelling based on recently published papers by the authors The main audience for this book is the community of applied geoscientists and engineers involved in understanding fluid flow in the subsurface: whether for the extraction of oil or gas or the injection of CO2 or the subsurface storage of energy in general. We will always need to understand how fluids move in the subsurface and we will always require skills to model these quantitatively. The second edition of this reference book therefore aims to highlight the modelling skills developed for the current energy industry which will also be required for the energy transition of the future. The book is aimed at technical-professional practitioners in the energy industry and is also suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. • Provides practical advice and guidelines for users of 3D reservoir modelling packages • Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling • Covers rock modelling, property modelling, upscaling, fluid flow and uncertainty handling • Encompasses clastic, carbonate and fractured reservoirs • Applies to multi-fluid cases and applications: hydrocarbons and CO2, production and storage; rewritten for use in the Energy Transition.