Universality in Nonequilibrium Lattice Systems

Universality in Nonequilibrium Lattice Systems PDF Author: Geza Odor
Publisher: World Scientific
ISBN: 9812812296
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.)The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems.

Universality in Nonequilibrium Lattice Systems

Universality in Nonequilibrium Lattice Systems PDF Author: Geza Odor
Publisher: World Scientific
ISBN: 9812812296
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.)The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems.

Universality In Nonequilibrium Lattice Systems: Theoretical Foundations

Universality In Nonequilibrium Lattice Systems: Theoretical Foundations PDF Author: Geza Odor
Publisher: World Scientific
ISBN: 9814471305
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.)The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems.

Field Theory of Non-Equilibrium Systems

Field Theory of Non-Equilibrium Systems PDF Author: Alex Kamenev
Publisher: Cambridge University Press
ISBN: 1108846440
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
The physics of non-equilibrium many-body systems is a rapidly expanding area of theoretical physics. Traditionally employed in laser physics and superconducting kinetics, these techniques have more recently found applications in the dynamics of cold atomic gases, mesoscopic and nano-mechanical systems, and quantum computation. This book provides a detailed presentation of modern non-equilibrium field-theoretical methods, applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. A highly pedagogical and self-contained approach is adopted within the text, making it ideal as a reference for graduate students and researchers in condensed matter physics. In this Second Edition, the text has been substantially updated to include recent developments in the field such as driven-dissipative quantum systems, kinetics of fermions with Berry curvature, and Floquet kinetics of periodically driven systems, among many other important new topics. Problems have been added throughout, structured as compact guided research projects that encourage independent exploration.

Non-Equilibrium Phase Transitions

Non-Equilibrium Phase Transitions PDF Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 9048128692
Category : Science
Languages : en
Pages : 562

Get Book Here

Book Description
“The importance of knowledge consists not only in its direct practical utility but also in the fact the it promotes a widely contemplative habit of mind; on this ground, utility is to be found in much of the knowledge that is nowadays labelled ‘useless’. ” Bertrand Russel, In Praise of Idleness, London (1935) “Why are scientists in so many cases so deeply interested in their work ? Is it merely because it is useful ? It is only necessary to talk to such scientists to discover that the utilitarian possibilities of their work are generally of secondary interest to them. Something else is primary. ” David Bohm, On creativity, Abingdon (1996) In this volume, the dynamical critical behaviour of many-body systems far from equilibrium is discussed. Therefore, the intrinsic properties of the - namics itself, rather than those of the stationary state, are in the focus of 1 interest. Characteristically, far-from-equilibrium systems often display - namical scaling, even if the stationary state is very far from being critical. A 1 As an example of a non-equilibrium phase transition, with striking practical c- sequences, consider the allotropic change of metallic ?-tin to brittle ?-tin. At o equilibrium, the gray ?-Sn becomes more stable than the silvery ?-Sn at 13. 2 C. Kinetically, the transition between these two solid forms of tin is rather slow at higher temperatures. It starts from small islands of ?-Sn, the growth of which proceeds through an auto-catalytic reaction.

Viscoelastic Interfaces Driven in Disordered Media

Viscoelastic Interfaces Driven in Disordered Media PDF Author: François P. Landes
Publisher: Springer
ISBN: 3319200224
Category : Science
Languages : en
Pages : 217

Get Book Here

Book Description
This book offers an in-depth study of two well-known models of “avalanche” dynamics, modified minimally by the inclusion of relaxation. Many complex systems respond to continuous inputs of energy by accumulation of stress over time, interrupted by sudden energy releases called avalanches. The first model studied is the viscoelastic interface driven over disorder, which is shown to display the fundamental features of friction. In the mean-field limit, the friction force derived semi-analytically is compatible with laboratory experiments (displaying both velocity weakening and contact aging). In two dimensions, large-scale numerical simulations are in good agreement with the basic features of real earthquakes (Gutenberg-Richter Law, aftershock migration). The second model is a non-Markovian variant of Directed Percolation, in which we observe that the universality class is only partly modified by relaxation, a promising finding with respect to our first model.

Nonequilibrium Phase Transitions in Driven Vortex Matter

Nonequilibrium Phase Transitions in Driven Vortex Matter PDF Author: Shun Maegochi
Publisher: Springer Nature
ISBN: 9819729874
Category :
Languages : en
Pages : 109

Get Book Here

Book Description


ISCS 2014: Interdisciplinary Symposium on Complex Systems

ISCS 2014: Interdisciplinary Symposium on Complex Systems PDF Author: Ali Sanayei
Publisher: Springer
ISBN: 3319107593
Category : Technology & Engineering
Languages : en
Pages : 362

Get Book Here

Book Description
The book you hold in your hands is the outcome of the “2014 Interdisciplinary Symposium on Complex Systems” held in the historical city of Florence. The book consists of 37 chapters from 4 areas of Physical Modeling of Complex Systems, Evolutionary Computations, Complex Biological Systems and Complex Networks. All 4 parts contain contributions that give interesting point of view on complexity in different areas in science and technology. The book starts with a comprehensive overview and classification of complexity problems entitled Physics in the world of ideas: Complexity as Energy” , followed by chapters about complexity measures and physical principles, its observation, modeling and its applications, to solving various problems including real-life applications. Further chapters contain recent research about evolution, randomness and complexity, as well as complexity in biological systems and complex networks. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as an instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications.

Nonequilibrium Phase Transitions in Lattice Models

Nonequilibrium Phase Transitions in Lattice Models PDF Author: Joaquin Marro
Publisher: Cambridge University Press
ISBN: 9780521019460
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
This book provides an introduction to nonequilibrium statistical physics via lattice models. Beginning with an introduction to the basic driven lattice gas, the early chapters discuss the relevance of this lattice model to certain natural phenomena, examining simulation results in detail. Later chapters discuss absorbing-state transitions, and examine a variety of systems subject to dynamic disorder. The book discusses the effects of multiparticle rules, nonunique absorbing-states and conservation laws, as well as the use of methods such as mean-field theory, Monte Carlo simulation and the concept of universality. It also includes detailed references and examples using simple respresentations of nature to describe real systems.

Self-Organized Criticality, Three Decades Later

Self-Organized Criticality, Three Decades Later PDF Author: Subhrangshu Sekhar Manna
Publisher: Frontiers Media SA
ISBN: 2889742199
Category : Science
Languages : en
Pages : 143

Get Book Here

Book Description


Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems

Non-perturbative Renormalization Group Approach to Some Out-of-Equilibrium Systems PDF Author: Malo Tarpin
Publisher: Springer Nature
ISBN: 3030398714
Category : Science
Languages : en
Pages : 217

Get Book Here

Book Description
This thesis presents the application of non-perturbative, or functional, renormalization group to study the physics of critical stationary states in systems out-of-equilibrium. Two different systems are thereby studied. The first system is the diffusive epidemic process, a stochastic process which models the propagation of an epidemic within a population. This model exhibits a phase transition peculiar to out-of-equilibrium, between a stationary state where the epidemic is extinct and one where it survives. The present study helps to clarify subtle issues about the underlying symmetries of this process and the possible universality classes of its phase transition. The second system is fully developed homogeneous isotropic and incompressible turbulence. The stationary state of this driven-dissipative system shows an energy cascade whose phenomenology is complex, with partial scale-invariance, intertwined with what is called intermittency. In this work, analytical expressions for the space-time dependence of multi-point correlation functions of the turbulent state in 2- and 3-D are derived. This result is noteworthy in that it does not rely on phenomenological input except from the Navier-Stokes equation and that it becomes exact in the physically relevant limit of large wave-numbers. The obtained correlation functions show how scale invariance is broken in a subtle way, related to intermittency corrections.