Author: R. Krichevsky
Publisher: Springer Science & Business Media
ISBN: 9401736286
Category : Computers
Languages : en
Pages : 230
Book Description
Objectives Computer and communication practice relies on data compression and dictionary search methods. They lean on a rapidly developing theory. Its exposition from a new viewpoint is the purpose of the book. We start from the very beginning and finish with the latest achievements of the theory, some of them in print for the first time. The book is intended for serving as both a monograph and a self-contained textbook. Information retrieval is the subject of the treatises by D. Knuth (1973) and K. Mehlhorn (1987). Data compression is the subject of source coding. It is a chapter of information theory. Its up-to-date state is presented in the books of Storer (1988), Lynch (1985), T. Bell et al. (1990). The difference between them and the present book is as follows. First. We include information retrieval into source coding instead of discussing it separately. Information-theoretic methods proved to be very effective in information search. Second. For many years the target of the source coding theory was the estimation of the maximal degree of the data compression. This target is practically bit today. The sought degree is now known for most of the sources. We believe that the next target must be the estimation of the price of approaching that degree. So, we are concerned with trade-off between complexity and quality of coding. Third. We pay special attention to universal families that contain a good com pressing map for every source in a set.
Universal Compression and Retrieval
Author: R. Krichevsky
Publisher: Springer Science & Business Media
ISBN: 9401736286
Category : Computers
Languages : en
Pages : 230
Book Description
Objectives Computer and communication practice relies on data compression and dictionary search methods. They lean on a rapidly developing theory. Its exposition from a new viewpoint is the purpose of the book. We start from the very beginning and finish with the latest achievements of the theory, some of them in print for the first time. The book is intended for serving as both a monograph and a self-contained textbook. Information retrieval is the subject of the treatises by D. Knuth (1973) and K. Mehlhorn (1987). Data compression is the subject of source coding. It is a chapter of information theory. Its up-to-date state is presented in the books of Storer (1988), Lynch (1985), T. Bell et al. (1990). The difference between them and the present book is as follows. First. We include information retrieval into source coding instead of discussing it separately. Information-theoretic methods proved to be very effective in information search. Second. For many years the target of the source coding theory was the estimation of the maximal degree of the data compression. This target is practically bit today. The sought degree is now known for most of the sources. We believe that the next target must be the estimation of the price of approaching that degree. So, we are concerned with trade-off between complexity and quality of coding. Third. We pay special attention to universal families that contain a good com pressing map for every source in a set.
Publisher: Springer Science & Business Media
ISBN: 9401736286
Category : Computers
Languages : en
Pages : 230
Book Description
Objectives Computer and communication practice relies on data compression and dictionary search methods. They lean on a rapidly developing theory. Its exposition from a new viewpoint is the purpose of the book. We start from the very beginning and finish with the latest achievements of the theory, some of them in print for the first time. The book is intended for serving as both a monograph and a self-contained textbook. Information retrieval is the subject of the treatises by D. Knuth (1973) and K. Mehlhorn (1987). Data compression is the subject of source coding. It is a chapter of information theory. Its up-to-date state is presented in the books of Storer (1988), Lynch (1985), T. Bell et al. (1990). The difference between them and the present book is as follows. First. We include information retrieval into source coding instead of discussing it separately. Information-theoretic methods proved to be very effective in information search. Second. For many years the target of the source coding theory was the estimation of the maximal degree of the data compression. This target is practically bit today. The sought degree is now known for most of the sources. We believe that the next target must be the estimation of the price of approaching that degree. So, we are concerned with trade-off between complexity and quality of coding. Third. We pay special attention to universal families that contain a good com pressing map for every source in a set.
Algebraic Structures and Operators Calculus
Author: P. Feinsilver
Publisher: Springer Science & Business Media
ISBN: 9400901577
Category : Mathematics
Languages : en
Pages : 236
Book Description
Introduction I. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III. Lie algebras: some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. Holomorphic canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 III. Canonical Appell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II. Dual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. Induced representations and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General Appell systems Chapter 3 I. Convolution and stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II. Stochastic processes on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III. Appell systems on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 II. Induced representation and coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 III. Orthogonal polynomials in several variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 II. Finite-difference algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 III. q-HW algebra and basic hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IV. su2 and Krawtchouk polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 V. e2 and Lommel polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 II. Type-H Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Vll III. Upper-triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 IV. Affine and Euclidean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 7 Hermitian symmetric spaces I. Basic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 II. Space of rectangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 III. Space of skew-symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 IV. Space of symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Chapter 8 Properties of matrix elements I. Addition formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 II. Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 III. Quotient representations and summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Chapter 9 Symbolic computations I. Computing the pi-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Adjoint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 III. Recursive computation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 9400901577
Category : Mathematics
Languages : en
Pages : 236
Book Description
Introduction I. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III. Lie algebras: some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. Holomorphic canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 III. Canonical Appell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II. Dual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. Induced representations and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General Appell systems Chapter 3 I. Convolution and stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II. Stochastic processes on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III. Appell systems on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 II. Induced representation and coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 III. Orthogonal polynomials in several variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 II. Finite-difference algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 III. q-HW algebra and basic hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IV. su2 and Krawtchouk polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 V. e2 and Lommel polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 II. Type-H Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Vll III. Upper-triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 IV. Affine and Euclidean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 7 Hermitian symmetric spaces I. Basic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 II. Space of rectangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 III. Space of skew-symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 IV. Space of symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Chapter 8 Properties of matrix elements I. Addition formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 II. Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 III. Quotient representations and summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Chapter 9 Symbolic computations I. Computing the pi-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Adjoint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 III. Recursive computation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clifford Algebras and Spinor Structures
Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 9780792333661
Category : Mathematics
Languages : en
Pages : 468
Book Description
This volume introduces mathematicians and physicists to a crossing point of algebra, physics, differential geometry and complex analysis. The book follows the French tradition of Cartan, Chevalley and Crumeyrolle and summarizes Crumeyrolle's own work on exterior algebra and spinor structures. The depth and breadth of Crumeyrolle's research interests and influence in the field is investigated in a number of articles. Of interest to physicists is the modern presentation of Crumeyrolle's approach to Weyl spinors, and to his spinoriality groups, which are formulated with spinor operators of Kustaanheimo and Hestenes. The Dirac equation and Dirac operator are studied both from the complex analytic and differential geometric points of view, in the modern sense of Ryan and Trautman. For mathematicians and mathematical physicists whose research involves algebra, quantum mechanics and differential geometry.
Publisher: Springer Science & Business Media
ISBN: 9780792333661
Category : Mathematics
Languages : en
Pages : 468
Book Description
This volume introduces mathematicians and physicists to a crossing point of algebra, physics, differential geometry and complex analysis. The book follows the French tradition of Cartan, Chevalley and Crumeyrolle and summarizes Crumeyrolle's own work on exterior algebra and spinor structures. The depth and breadth of Crumeyrolle's research interests and influence in the field is investigated in a number of articles. Of interest to physicists is the modern presentation of Crumeyrolle's approach to Weyl spinors, and to his spinoriality groups, which are formulated with spinor operators of Kustaanheimo and Hestenes. The Dirac equation and Dirac operator are studied both from the complex analytic and differential geometric points of view, in the modern sense of Ryan and Trautman. For mathematicians and mathematical physicists whose research involves algebra, quantum mechanics and differential geometry.
Cryptography and Coding
Author: Michael Walker
Publisher: Springer
ISBN: 3540466657
Category : Computers
Languages : en
Pages : 323
Book Description
Publisher: Springer
ISBN: 3540466657
Category : Computers
Languages : en
Pages : 323
Book Description
Idempotent Analysis and Its Applications
Author: Vassili N. Kolokoltsov
Publisher: Springer Science & Business Media
ISBN: 9401589011
Category : Mathematics
Languages : en
Pages : 318
Book Description
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In ยง1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
Publisher: Springer Science & Business Media
ISBN: 9401589011
Category : Mathematics
Languages : en
Pages : 318
Book Description
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In ยง1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
Quaternions and Cayley Numbers
Author: J.P. Ward
Publisher: Springer Science & Business Media
ISBN: 9401157685
Category : Mathematics
Languages : en
Pages : 252
Book Description
In essence, this text is written as a challenge to others, to discover significant uses for Cayley number algebra in physics. I freely admit that though the reading of some sections would benefit from previous experience of certain topics in physics - particularly relativity and electromagnetism - generally the mathematics is not sophisticated. In fact, the mathematically sophisticated reader, may well find that in many places, the rather deliberate progress too slow for their liking. This text had its origin in a 90-minute lecture on complex numbers given by the author to prospective university students in 1994. In my attempt to develop a novel approach to the subject matter I looked at complex numbers from an entirely geometric perspective and, no doubt in line with innumerable other mathematicians, re-traced steps first taken by Hamilton and others in the early years of the nineteenth century. I even enquired into the possibility of using an alternative multiplication rule for complex numbers (in which argzlz2 = argzl- argz2) other than the one which is normally accepted (argzlz2 = argzl + argz2). Of course, my alternative was rejected because it didn't lead to a 'product' which had properties that we now accept as fundamental (i. e.
Publisher: Springer Science & Business Media
ISBN: 9401157685
Category : Mathematics
Languages : en
Pages : 252
Book Description
In essence, this text is written as a challenge to others, to discover significant uses for Cayley number algebra in physics. I freely admit that though the reading of some sections would benefit from previous experience of certain topics in physics - particularly relativity and electromagnetism - generally the mathematics is not sophisticated. In fact, the mathematically sophisticated reader, may well find that in many places, the rather deliberate progress too slow for their liking. This text had its origin in a 90-minute lecture on complex numbers given by the author to prospective university students in 1994. In my attempt to develop a novel approach to the subject matter I looked at complex numbers from an entirely geometric perspective and, no doubt in line with innumerable other mathematicians, re-traced steps first taken by Hamilton and others in the early years of the nineteenth century. I even enquired into the possibility of using an alternative multiplication rule for complex numbers (in which argzlz2 = argzl- argz2) other than the one which is normally accepted (argzlz2 = argzl + argz2). Of course, my alternative was rejected because it didn't lead to a 'product' which had properties that we now accept as fundamental (i. e.
Semidistributive Modules and Rings
Author: A.A. Tuganbaev
Publisher: Springer Science & Business Media
ISBN: 9401150869
Category : Mathematics
Languages : en
Pages : 368
Book Description
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive.
Publisher: Springer Science & Business Media
ISBN: 9401150869
Category : Mathematics
Languages : en
Pages : 368
Book Description
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive.
Advanced Relational Programming
Author: F. Cacace
Publisher: Springer Science & Business Media
ISBN: 9400708580
Category : Computers
Languages : en
Pages : 412
Book Description
This volume aims to present recent advances in database technology from the viewpoint of the novel database paradigms proposed in the last decade. It focuses on the theory of the extended relational model and an example of an extended relational database programming language, Algres, is described. A free copy of Algres complements this work, and is available on the Internet. Audience: This work will be of interest to graduate students following advanced database courses, advanced data-oriented applications developers, and researchers in the field of database programming languages and software engineering who need a flexible prototyping platform for the development of software tools.
Publisher: Springer Science & Business Media
ISBN: 9400708580
Category : Computers
Languages : en
Pages : 412
Book Description
This volume aims to present recent advances in database technology from the viewpoint of the novel database paradigms proposed in the last decade. It focuses on the theory of the extended relational model and an example of an extended relational database programming language, Algres, is described. A free copy of Algres complements this work, and is available on the Internet. Audience: This work will be of interest to graduate students following advanced database courses, advanced data-oriented applications developers, and researchers in the field of database programming languages and software engineering who need a flexible prototyping platform for the development of software tools.
Jordan, Real and Lie Structures in Operator Algebras
Author: Sh. Ayupov
Publisher: Springer Science & Business Media
ISBN: 9401586055
Category : Mathematics
Languages : en
Pages : 239
Book Description
The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.
Publisher: Springer Science & Business Media
ISBN: 9401586055
Category : Mathematics
Languages : en
Pages : 239
Book Description
The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.
Transmitting and Gaining Data
Author: Rudolf Ahlswede
Publisher: Springer
ISBN: 3319125230
Category : Mathematics
Languages : en
Pages : 471
Book Description
The calculation of channel capacities was one of Rudolf Ahlswede's specialties and is the main topic of this second volume of his Lectures on Information Theory. Here we find a detailed account of some very classical material from the early days of Information Theory, including developments from the USA, Russia, Hungary and (which Ahlswede was probably in a unique position to describe) the German school centered around his supervisor Konrad Jacobs. These lectures made an approach to a rigorous justification of the foundations of Information Theory. This is the second of several volumes documenting Rudolf Ahlswede's lectures on Information Theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Gerhard Kramer contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.
Publisher: Springer
ISBN: 3319125230
Category : Mathematics
Languages : en
Pages : 471
Book Description
The calculation of channel capacities was one of Rudolf Ahlswede's specialties and is the main topic of this second volume of his Lectures on Information Theory. Here we find a detailed account of some very classical material from the early days of Information Theory, including developments from the USA, Russia, Hungary and (which Ahlswede was probably in a unique position to describe) the German school centered around his supervisor Konrad Jacobs. These lectures made an approach to a rigorous justification of the foundations of Information Theory. This is the second of several volumes documenting Rudolf Ahlswede's lectures on Information Theory. Each volume includes comments from an invited well-known expert. In the supplement to the present volume, Gerhard Kramer contributes his insights. Classical information processing concerns the main tasks of gaining knowledge and the storage, transmission and hiding of data. The first task is the prime goal of Statistics. For transmission and hiding data, Shannon developed an impressive mathematical theory called Information Theory, which he based on probabilistic models. The theory largely involves the concept of codes with small error probabilities in spite of noise in the transmission, which is modeled by channels. The lectures presented in this work are suitable for graduate students in Mathematics, and also for those working in Theoretical Computer Science, Physics, and Electrical Engineering with a background in basic Mathematics. The lectures can be used as the basis for courses or to supplement courses in many ways. Ph.D. students will also find research problems, often with conjectures, that offer potential subjects for a thesis. More advanced researchers may find questions which form the basis of entire research programs.