Representations of Solvable Lie Groups and their Applications

Representations of Solvable Lie Groups and their Applications PDF Author: Didier Arnal
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.

Unitary Representations of Solvable Lie Groups

Unitary Representations of Solvable Lie Groups PDF Author: Louis Auslander
Publisher: American Mathematical Soc.
ISBN: 0821812629
Category : Group theory
Languages : en
Pages : 208

Get Book Here

Book Description


Representations of Solvable Lie Groups and their Applications

Representations of Solvable Lie Groups and their Applications PDF Author: Didier Arnal
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.

Unitary Representation Theory of Exponential Lie Groups

Unitary Representation Theory of Exponential Lie Groups PDF Author: Horst Leptin
Publisher: Walter de Gruyter
ISBN: 9783110139389
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Representation Theory of Solvable Lie Groups and Related Topics

Representation Theory of Solvable Lie Groups and Related Topics PDF Author: Ali Baklouti
Publisher:
ISBN: 9783030820459
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces.

Unitary Representations of Solvable Lie Groups

Unitary Representations of Solvable Lie Groups PDF Author: Louis Auslander
Publisher:
ISBN:
Category : Group theory
Languages : en
Pages : 212

Get Book Here

Book Description


Representations of Nilpotent Lie Groups and Their Applications: Volume 1, Part 1, Basic Theory and Examples

Representations of Nilpotent Lie Groups and Their Applications: Volume 1, Part 1, Basic Theory and Examples PDF Author: Laurence Corwin
Publisher: Cambridge University Press
ISBN: 9780521604956
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The first exposition of group representations and harmonic analysis for graduates for over twenty years.

Representation Theory of Lie Groups

Representation Theory of Lie Groups PDF Author: Jeffrey Adams
Publisher: American Mathematical Soc.
ISBN: 1470423146
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
This book contains written versions of the lectures given at the PCMI Graduate Summer School on the representation theory of Lie groups. The volume begins with lectures by A. Knapp and P. Trapa outlining the state of the subject around the year 1975, specifically, the fundamental results of Harish-Chandra on the general structure of infinite-dimensional representations and the Langlands classification. Additional contributions outline developments in four of the most active areas of research over the past 20 years. The clearly written articles present results to date, as follows: R. Zierau and L. Barchini discuss the construction of representations on Dolbeault cohomology spaces. D. Vogan describes the status of the Kirillov-Kostant "philosophy of coadjoint orbits" for unitary representations. K. Vilonen presents recent advances in the Beilinson-Bernstein theory of "localization". And Jian-Shu Li covers Howe's theory of "dual reductive pairs". Each contributor to the volume presents the topics in a unique, comprehensive, and accessible manner geared toward advanced graduate students and researchers. Students should have completed the standard introductory graduate courses for full comprehension of the work. The book would also serve well as a supplementary text for a course on introductory infinite-dimensional representation theory. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Group Representation for Quantum Theory

Group Representation for Quantum Theory PDF Author: Masahito Hayashi
Publisher: Springer
ISBN: 3319449060
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Theory of Group Representations and Applications

Theory of Group Representations and Applications PDF Author: Asim Orhan Barut
Publisher: World Scientific
ISBN: 9789971502171
Category : Mathematics
Languages : en
Pages : 750

Get Book Here

Book Description
Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.