Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras PDF Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821869205
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras PDF Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821869205
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.

Lie Groups and Algebraic Groups

Lie Groups and Algebraic Groups PDF Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.

Conjugacy Classes in Semisimple Algebraic Groups

Conjugacy Classes in Semisimple Algebraic Groups PDF Author: James E. Humphreys
Publisher: American Mathematical Soc.
ISBN: 0821852760
Category : Education
Languages : en
Pages : 218

Get Book Here

Book Description
Provides a useful exposition of results on the structure of semisimple algebraic groups over an arbitrary algebraically closed field. After the fundamental work of Borel and Chevalley in the 1950s and 1960s, further results were obtained over the next thirty years on conjugacy classes and centralizers of elements of such groups.

Centres of Centralizers of Unipotent Elements in Simple Algebraic Groups

Centres of Centralizers of Unipotent Elements in Simple Algebraic Groups PDF Author: Ross Lawther
Publisher: American Mathematical Soc.
ISBN: 0821847694
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Let G be a simple algebraic group defined over an algebraically closed field k whose characteristic is either 0 or a good prime for G, and let uEG be unipotent. The authors study the centralizer CG(u), especially its centre Z(CG(u)). They calculate the Lie algebra of Z(CG(u)), in particular determining its dimension; they prove a succession of theorems of increasing generality, the last of which provides a formula for dim Z(CG(u)) in terms of the labelled diagram associated to the conjugacy class containing u.

Lie Theory

Lie Theory PDF Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.

Generic Stabilizers in Actions of Simple Algebraic Groups

Generic Stabilizers in Actions of Simple Algebraic Groups PDF Author: R. M. Guralnick
Publisher: American Mathematical Society
ISBN: 1470470527
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
View the abstract.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 082184377X
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Algebraic Groups

Algebraic Groups PDF Author: J. S. Milne
Publisher: Cambridge University Press
ISBN: 1107167485
Category : Mathematics
Languages : en
Pages : 665

Get Book Here

Book Description
Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428691
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

The Irreducible Subgroups of Exceptional Algebraic Groups

The Irreducible Subgroups of Exceptional Algebraic Groups PDF Author: Adam R. Thomas
Publisher: American Mathematical Soc.
ISBN: 1470443376
Category : Education
Languages : en
Pages : 191

Get Book Here

Book Description
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.