Understanding the Roles of Bronsted Acid and Nickel Sites in Microporous and Mesoporous Light Olefin Oligomerization Catalysts

Understanding the Roles of Bronsted Acid and Nickel Sites in Microporous and Mesoporous Light Olefin Oligomerization Catalysts PDF Author: Anton Mlinar
Publisher:
ISBN:
Category :
Languages : en
Pages : 123

Get Book Here

Book Description
The oligomerization of propene to produce higher molecular weight molecules was investigated as a model reaction pathway for the synthesis of liquid transportation fuels and fuel additives from C2 to C5 light olefins. In this scheme, light olefins could come from a variety of sources including the cracking of petroleum, as a byproduct in the production of hydrocarbons from synthesis gas during Fisher-Tropsch synthesis, or from the dehydration of alcohols created during biomass fermentation. Transformation of these light olefins into heavier molecules could allow for future production of transportation fuels from many carbon-rich sources, including natural gas, coal, and biomass, instead of the current system that relies almost exclusively on petroleum. Microporous and mesoporous Brønsted acidic and exchanged nickel materials are the most common heterogeneous catalysts for the oligomerization of light olefins into heavier products. Much is unknown about the role of the catalyst in influencing the oligomer size and the degree of oligomer branching - both characteristics crucial to the production of high quality liquid fuels - making the selection and design of appropriate oligomerization catalysts challenging. It was therefore the goal of this dissertation to establish how the catalyst site, proximity of sites, and catalyst support influence the final product distribution of oligomers. The discussion begins with an examination of the role of the acid site density in the Brønsted acidic zeolite H-MFI on the activity and selectivity to propene dimers. An increase in the aluminum site density, represented by a decrease in the catalyst Si/Al ratio from 140 to 10, was determined to decrease the conversion of propene to heavier products from 75% to 10% at 548 K. Examination of the reaction pathways for oligomer formation using kinetic analyses and DFT simulations indicate that site density influences the relative rates of oligomer growth and desorption. Specifically, the high loading of hydrocarbons in zeolites with low Si/Al ratios limit oligomer growth beyond the dimer lowering the propene conversion, as fewer oligomers are formed, but also increasing dimer selectivity due to the smaller concentration of long oligomers required for secondary cracking reactions. Regardless of the Si/Al ratio in H-MFI, the activity of the Brønsted acid sites for oligomer cracking and aromatic formation limit the control over the product distribution with these catalysts. To achieve better oligomer control and limit secondary oligomer reactions, heterogeneous nickel-exchanged aluminosilicates were explored. These materials can achieve near complete conversion of ethene to oligomers with > 98% selectivity at high olefin pressures; however, the manner in which these catalysts convert light olefins into heavier products is not understood. Therefore, to determine any potential benefit to using these catalysts over Brønsted acidic zeolites, the reaction mechanism, state of nickel sites, and influence of catalyst support were investigated to determine their roles in catalyst activity and oligomer branching. A series of Ni-exchanged Na-X zeolites with various nickel loadings were successfully synthesized via aqueous ion exchange with nickel (II) nitrate and explored as propene oligomerization catalysts. Characterization of Ni-Na-X indicates that Ni remains Ni2+ both after synthesis and under reaction conditions, contrary to previous reports. Although all catalysts were > 98% selective to oligomers at 453 K and 1-5 bar propene pressure, the catalyst activity was determined to be a strong function of the nickel loading. At high nickel loadings, the catalyst is active immediately upon exposure to propene but deactivates rapidly to 0% conversion. As the nickel loading is decreased below 1 wt%, however, the catalyst exhibits low initial activity and instead activates with time on stream, before deactivating and reaching a non-zero steady-state activity after more than 2000 min of time on stream. Development of a reaction network and subsequent microkinetic model indicates that the activation period is caused by migration of Ni2+ cations from inaccessible positions of the zeolite to the supercage, where catalysis occurs. The subsequent catalyst deactivation is caused by complexation of nearby sites within the zeolite supercage leaving only isolated Ni2+ sites active at steady state. Once an understanding of the time on stream activity profile was established, the role of the support on the catalyst activity and degree of dimer branching was examined. Exchanging the non-catalytic co-cation in the zeolite, Na+ in Ni-Na-X, for other alkali metal and alkaline earth co-cations was determined to influence both the propene oligomerization activity and dimer isomer distribution. Specifically, Li+, the smallest alkali metal co-cation, and Sr2+, the largest alkaline earth co-cation examined, led to the highest dimer branching and catalyst activity per Ni2+ cation in their respective groups. It was determined that this effect was caused by both larger cations expanding the zeolite lattice and alkali metal cations present in the zeolite supercage taking up otherwise open pore volume. This led to the conclusion that space around the Ni2+ cations in the supercage is what governs catalytic activity and dimer branching in these catalysts. The realization that space around the Ni2+ site controls catalyst activity led to the exploration of larger mesoporous aluminosilicate structures as potentially more active propene oligomerization catalysts. To this end, Ni-exchanged MCM-41 and MCM-48 (pore size = 23 Å) and SBA-15 (pore size = 57 Å) were synthesized and examined as oligomerization catalysts. It was determined that the same principles established in zeolites for making an active catalyst, such as high Ni2+ dispersion, were still applicable to these larger-pored systems. As predicted, further increasing the space around the active site did increase the catalyst activity with the highest activity per Ni2+ site existing for the SBA-15 material. The decreased steric constraints from the support in these structures, however, led to increased trimer production as well as catalyst deactivation caused by heavy molecules depositing in the pores. The more open environment also resulted in less control over the degree of dimer branching causing all mesoporous catalysts to produce a 49/51 mixture of branched to linear dimers at 453 K and 1 bar propene pressure.

Understanding the Roles of Bronsted Acid and Nickel Sites in Microporous and Mesoporous Light Olefin Oligomerization Catalysts

Understanding the Roles of Bronsted Acid and Nickel Sites in Microporous and Mesoporous Light Olefin Oligomerization Catalysts PDF Author: Anton Mlinar
Publisher:
ISBN:
Category :
Languages : en
Pages : 123

Get Book Here

Book Description
The oligomerization of propene to produce higher molecular weight molecules was investigated as a model reaction pathway for the synthesis of liquid transportation fuels and fuel additives from C2 to C5 light olefins. In this scheme, light olefins could come from a variety of sources including the cracking of petroleum, as a byproduct in the production of hydrocarbons from synthesis gas during Fisher-Tropsch synthesis, or from the dehydration of alcohols created during biomass fermentation. Transformation of these light olefins into heavier molecules could allow for future production of transportation fuels from many carbon-rich sources, including natural gas, coal, and biomass, instead of the current system that relies almost exclusively on petroleum. Microporous and mesoporous Brønsted acidic and exchanged nickel materials are the most common heterogeneous catalysts for the oligomerization of light olefins into heavier products. Much is unknown about the role of the catalyst in influencing the oligomer size and the degree of oligomer branching - both characteristics crucial to the production of high quality liquid fuels - making the selection and design of appropriate oligomerization catalysts challenging. It was therefore the goal of this dissertation to establish how the catalyst site, proximity of sites, and catalyst support influence the final product distribution of oligomers. The discussion begins with an examination of the role of the acid site density in the Brønsted acidic zeolite H-MFI on the activity and selectivity to propene dimers. An increase in the aluminum site density, represented by a decrease in the catalyst Si/Al ratio from 140 to 10, was determined to decrease the conversion of propene to heavier products from 75% to 10% at 548 K. Examination of the reaction pathways for oligomer formation using kinetic analyses and DFT simulations indicate that site density influences the relative rates of oligomer growth and desorption. Specifically, the high loading of hydrocarbons in zeolites with low Si/Al ratios limit oligomer growth beyond the dimer lowering the propene conversion, as fewer oligomers are formed, but also increasing dimer selectivity due to the smaller concentration of long oligomers required for secondary cracking reactions. Regardless of the Si/Al ratio in H-MFI, the activity of the Brønsted acid sites for oligomer cracking and aromatic formation limit the control over the product distribution with these catalysts. To achieve better oligomer control and limit secondary oligomer reactions, heterogeneous nickel-exchanged aluminosilicates were explored. These materials can achieve near complete conversion of ethene to oligomers with > 98% selectivity at high olefin pressures; however, the manner in which these catalysts convert light olefins into heavier products is not understood. Therefore, to determine any potential benefit to using these catalysts over Brønsted acidic zeolites, the reaction mechanism, state of nickel sites, and influence of catalyst support were investigated to determine their roles in catalyst activity and oligomer branching. A series of Ni-exchanged Na-X zeolites with various nickel loadings were successfully synthesized via aqueous ion exchange with nickel (II) nitrate and explored as propene oligomerization catalysts. Characterization of Ni-Na-X indicates that Ni remains Ni2+ both after synthesis and under reaction conditions, contrary to previous reports. Although all catalysts were > 98% selective to oligomers at 453 K and 1-5 bar propene pressure, the catalyst activity was determined to be a strong function of the nickel loading. At high nickel loadings, the catalyst is active immediately upon exposure to propene but deactivates rapidly to 0% conversion. As the nickel loading is decreased below 1 wt%, however, the catalyst exhibits low initial activity and instead activates with time on stream, before deactivating and reaching a non-zero steady-state activity after more than 2000 min of time on stream. Development of a reaction network and subsequent microkinetic model indicates that the activation period is caused by migration of Ni2+ cations from inaccessible positions of the zeolite to the supercage, where catalysis occurs. The subsequent catalyst deactivation is caused by complexation of nearby sites within the zeolite supercage leaving only isolated Ni2+ sites active at steady state. Once an understanding of the time on stream activity profile was established, the role of the support on the catalyst activity and degree of dimer branching was examined. Exchanging the non-catalytic co-cation in the zeolite, Na+ in Ni-Na-X, for other alkali metal and alkaline earth co-cations was determined to influence both the propene oligomerization activity and dimer isomer distribution. Specifically, Li+, the smallest alkali metal co-cation, and Sr2+, the largest alkaline earth co-cation examined, led to the highest dimer branching and catalyst activity per Ni2+ cation in their respective groups. It was determined that this effect was caused by both larger cations expanding the zeolite lattice and alkali metal cations present in the zeolite supercage taking up otherwise open pore volume. This led to the conclusion that space around the Ni2+ cations in the supercage is what governs catalytic activity and dimer branching in these catalysts. The realization that space around the Ni2+ site controls catalyst activity led to the exploration of larger mesoporous aluminosilicate structures as potentially more active propene oligomerization catalysts. To this end, Ni-exchanged MCM-41 and MCM-48 (pore size = 23 Å) and SBA-15 (pore size = 57 Å) were synthesized and examined as oligomerization catalysts. It was determined that the same principles established in zeolites for making an active catalyst, such as high Ni2+ dispersion, were still applicable to these larger-pored systems. As predicted, further increasing the space around the active site did increase the catalyst activity with the highest activity per Ni2+ site existing for the SBA-15 material. The decreased steric constraints from the support in these structures, however, led to increased trimer production as well as catalyst deactivation caused by heavy molecules depositing in the pores. The more open environment also resulted in less control over the degree of dimer branching causing all mesoporous catalysts to produce a 49/51 mixture of branched to linear dimers at 453 K and 1 bar propene pressure.

The Role of Acidity in Heterogeneous Nickel Catalysts for the Oligomerization of Light Olefins

The Role of Acidity in Heterogeneous Nickel Catalysts for the Oligomerization of Light Olefins PDF Author: Martin J. Menart
Publisher:
ISBN:
Category : Alkenes
Languages : en
Pages : 168

Get Book Here

Book Description


Mechanisms and Kinetics of Ethylene Oligomerization Over Nickel-based Heterogeneous Catalysts

Mechanisms and Kinetics of Ethylene Oligomerization Over Nickel-based Heterogeneous Catalysts PDF Author: Gabriel Viana Sueth Seufitelli
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description
The present research describes the kinetics and mechanisms of the ethylene oligomerization over nickel-based solid catalysts at subcritical and supercritical ethylene conditions. The Ni-H-Beta catalyst was used due to its high activity for the conversion of ethylene into higher alkenes. Initially, the role of nickel and Brønsted sites on the ethylene oligomerization over Ni-H-Beta catalysts is investigated. According to the catalyst characterization results, nickel is present on the catalyst surface as Ni2+, from the free NiO phase and highly dispersed Ni2+ interacting with the catalyst’s lattice oxygen. Ethylene sorption results indicate that ethylene dissociates over two active sites upon adsorption over the Ni-H-Beta. Further characterization via pyridine sorption suggests that the presence of non-coordinated Ni2+ or Brønsted sites decreases the probability for the formation of the active sites on the catalyst surface. Then, the kinetics of ethylene oligomerization over the Ni-H-Beta are discussed. A kinetic model was developed for temperatures varying between 50 and 100°C and pressures varying between 5 and 28 atm. The results indicate the butene and hexene are formed via a series of ethylene coordination-insertion steps and the formation of octene follows the co-oligomerization of ethylene and desorbed butene. In the present study, we refer to the pathway involving co-oligomerization of butene and hexene as "cascade co-oligomerization". A detailed reaction network is proposed and modeled based on the Langmuir-Hinshelwood-Hougen-Watson kinetics. After studying the mechanisms and kinetics of the ethylene oligomerization under subcritical conditions, the solubility of coke in supercritical ethylene is discussed. The solubility of coke in ethylene was investigated at 30, 50, and 75°C and pressures ranging from 1 to 68 bar; conditions previously screened by our research group for ethylene oligomerization. The approach uses n-decane as a model compound to simulate coke formed during the catalytic process. A detailed thermodynamic model is developed for the solubility of n-decane in subcritical and supercritical ethylene. Beyond the ethylene critical point (P = 50.3 bar and T = 9.4°C) the solubility of n-decane in ethylene at 30°C reaches a maximum value of 3.0%; close to the value observed at 50 and 75°C, under the same pressure. Comparison of kinetic and solubility data show that the transport of products from the catalyst to the bulk of the supercritical fluid is a function of the reaction temperature. At low temperatures (30°C), coke dissolution rates are higher than apparent coke production rates. However, at high temperatures (60 and 90°C), coke dissolution rates are not able to outcompete the high rates of coke formation. The last step of the study with the Ni-H-Beta catalyst involves a kinetic model under supercritical ethylene conditions. The kinetic data under supercritical conditions are modeled based on the Langmuir-Hinshelwood-Hougen-Watson kinetics. Three different reaction limiting steps are compared: adsorption, chain-growth, and desorption. The model that assumes desorption of products as the reaction limiting step provides the best fitting of the kinetic data among the models proposed in the present work. Therefore, the slow desorption of products from the catalyst surface to the bulk of supercritical ethylene limits the reaction. This result is consistent with the result obtained in the solubility study.Based on the previous solubility and kinetic studies, a novel catalyst is designed for the oligomerization of supercritical ethylene. This catalyst is composed of nickel supported on mesoporous SIRAL support. We report the production of liquid products at 50, 100, and 200°C and 40 and 65 bar operating at both single and dual reactor configurations. The novel Ni-SIRAL catalyst is able to oligomerize ethylene at supercritical conditions without experiencing deactivation. The liquid product is composed of linear alkenes and a substantial fraction of cycloalkanes (8.5 wt. %). A high yield for liquid hydrocarbons of 60.8 wt. % is reported at 200oC and 65 bar.

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I PDF Author: Giuliano Giambastiani
Publisher: Springer Science & Business Media
ISBN: 9048138159
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description
This book highlights key advances that have occurred in the field of olefin conversion in recent years. The role of homogenous transition metal catalysts which contain an imine functionality is emphasized; their potential applications in the processing and upgrade of olefins to a wide variety of commodity products of very high industrial value is also explored. On the threshold of the fiftieth anniversary of the Noble Prize to Ziegler and Natta, this book gives a critical summary of the state of the art developments in the fascinating and rapidly developing field of the olefin polymerization, oligomerization, and co-polymerization catalysis.

Chain Growth of Alkenes to Produce Commodity Chemicals with Heterogeneous Catalysts

Chain Growth of Alkenes to Produce Commodity Chemicals with Heterogeneous Catalysts PDF Author: Zhuoran Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Current US natural gas prices are the lowest in nearly 20 years thanks to the recent development of hydraulic fracturing technology. The shale gas incentive has provided the olefin industry an opportunity to obtain light alkenes at lower prices and to convert light alkenes into molecules with higher values. The oligomerization of light alkene into longer chain oligomers with controlled chain length and carbon bone structure is commercially achieved with homogeneous catalysts because of the poor selectivity with heterogeneous catalysts. The research here presents different approaches for the oligomerization of light olefins with a variety of heterogeneous catalysts. Medium-pore zeolites have a higher selectivity towards true oligomers with ethylene or 1-butene as a feedstock than the small-pore and large-pore zeolite catalysts. Specifically, H-ferrierite has the highest dimer selectivity from 1-butene among the commercially available un-modified zeolites including H-ZSM-5, H-Mordenite and H-[beta] zeolite. Deactivation is inhibited when operating 1-butene conversion with H-ferrierite in the supercritical phase. Two-dimensional gas chromatograph (2D-GC) was used to analyze the complex product mixtures from this reaction which allows us to separate and quantify nearly a hundred olefin isomers. Over 99% of the oligomer products observed from H-ferrierite were branched. A carbocation-based reaction mechanism occurs with zeolites which forms branched olefins due to the catalysis of the Bronsted acid sites naturally existing within a zeolite framework. A carbon supported cobalt oxide catalyst (CoOX/N-C) was studied for light olefin conversion. The catalyst was synthesized by depositing cobalt nitrate precursor onto a mesoporous carbon material previously treated with NH4OH, followed by decomposition of cobalt salt to form cobalt oxide. Pretreated at 230 [degrees]C, the CoOX/N-C produced 70-85% of linear dimer among all the dimers observed from 1-butene conversion. The Co(III) content is sensitive to the pretreatment temperature, and the catalyst pretreated at 230 [degrees]C has the highest Co(III) content with the highest oligomerization activity. The side reaction involves double bond isomerization of the alpha-olefin feed to form internal olefins. The internal olefins are inactive towards oligomerization. Nevertheless, CoOX/N-C was found to be active and selective in converting a diversity of light LAOs including ethylene, propylene, 1-butene and 1-hexene into linear dimers with above 50% distribution. The isomerization of 1-butene or 1-hexene was a competing reaction that effectively inhibited the formation of branched dimers. The products from this catalyst follow a Cossee-type mechanism. The Cossee-Arlman mechanism was initially proposed to describe the polymerization of [small alpha]-olefins with Ziegler-Natta catalysts or metallocene catalysts [1], where the oligomer chain continues to grow by combining the monomer with the intermediate coordination complex. The catalyst however, suffered from deactivation. Catalyst deactivation is mainly caused by site blocking from olefin accumulation. A bimetallic, chromium-promoted cobalt on carbon catalyst (Cr-CoOX/N-C) was synthesized, characterized, and tested for ethylene and 1-butene conversion. No significant loss of activity was observed when 1-butene was converted with Cr-CoOX/N-C. The bimetallic catalyst showed enhanced activity and stability in converting both olefin feeds as compared to CoOX/N-C. Particularly, the Cr-CoOX/N-C was able to deliver a 1-butene selectivity of 82.4% at an ethylene conversion of 8.9%. Addition of Cr altered the cobalt oxidation state with more Co (II) existing in Cr-CoOX/N-C compared to CoOX/N-C. The Co (II) species in the catalyst is beneficial for the final desorption step of the oligomer products from the active site - which could be the reason why a more stable catalyst is attained where oligomer accumulation can be effectively avoided. A preliminary kinetic modelling for ethylene conversion with Cr-CoOX/N-C was constructed. The results from the kinetic modelling pointed to a higher (50%) active site dispersion that was achieved with the Cr-promoted catalyst as compared to the non-promoted catalyst.

Oligomerization of Chemical and Biological Compounds

Oligomerization of Chemical and Biological Compounds PDF Author: Claire Lesieur
Publisher: BoD – Books on Demand
ISBN: 9535116177
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
Many thanks to the authors for high quality chapters and to the referees for helping improve the manuscripts. The book is interdisciplinary, it covers fields from organic chemistry to mathematics, and raises different aspects of oligomerization. It is a great source of information as every chapter introduces general knowledge and deep details. Mixing communities is to instigate novel ideas and hopefully help looking at oligomerization with new eyes.

Olefin Polymerization

Olefin Polymerization PDF Author: Walter Kaminsky
Publisher: Wiley-VCH
ISBN: 9783527317424
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.

Mesoporous Zeolites

Mesoporous Zeolites PDF Author: Javier García-Martínez
Publisher: John Wiley & Sons
ISBN: 3527335749
Category : Technology & Engineering
Languages : en
Pages : 608

Get Book Here

Book Description
Authored by a top-level team of both academic and industrial researchers in the field, this is an up-to-date review of mesoporous zeolites. The leading experts cover novel preparation methods that allow for a purpose-oriented fine-tuning of zeolite properties, as well as the related materials, discussing the specific characterization methods and the applications in close relation to each individual preparation approach. The result is a self-contained treatment of the different classes of mesoporous zeolites. With its academic insights and practical relevance this is a comprehensive handbook for researchers in the field and related areas, as well as for developers from the chemical industry.

Fast Pyrolysis of Biomass

Fast Pyrolysis of Biomass PDF Author: Robert C Brown
Publisher: Royal Society of Chemistry
ISBN: 1782626182
Category : Science
Languages : en
Pages : 291

Get Book Here

Book Description
Fast pyrolysis and related catalytic pyrolysis are of increasing interest as pathways to advanced biofuels that closely mimic traditional petroleum products. Research has moved from empirical investigations to more fundamental studies of pyrolysis mechanisms. Theories on the chemical and physical pathways from plant polymers to pyrolysis products have proliferated as a result. This book brings together the latest developments in pyrolysis science and technology. It examines, reviews and challenges the unresolved and sometimes controversial questions about pyrolysis, helping advance the understanding of this important technology and stimulating discussion on the various competing theories of thermal deconstruction of plant polymers. Beginning with an introduction to the biomass-to-biofuels process via fast pyrolysis and catalytic pyrolysis, chapters address prominent questions such as whether free radicals or concerted reactions dominate deconstruction reactions. Finally, the book concludes with an economic analysis of fast pyrolysis versus catalytic pyrolysis. This book will be of interest to advanced students and researchers interested in the science behind renewable fuel technology, and particularly the thermochemical processing of biomass.

Deactivation and Regeneration of Zeolite Catalysts

Deactivation and Regeneration of Zeolite Catalysts PDF Author: M. Guisnet
Publisher: World Scientific
ISBN: 1848166370
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers in a comprehensive way both the fundamental and applied aspects of solid catalyst deactivation and encompasses the state-of-the-art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration, by collecting a series of contributions by experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, an anthology of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.