Author: Stamatios V. Kartalopoulos
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 240
Book Description
Understand the fundamentals of the emerging field of fuzzy neural networks, their applications and the most used paradigms with this carefully organized state-of-the-art textbook. Previously tested at a number of noteworthy conference tutorials, the simple numerical examples presented in this book provide excellent tools for progressive learning. UNDERSTANDING NEURAL NETWORKS AND FUZZY LOGIC offers a simple presentation and bottom-up approach that is ideal for working professional engineers, undergraduates, medical/biology majors, and anyone with a nonspecialist background. Sponsored by: IEEE Neural Networks Council
Understanding Neural Networks and Fuzzy Logic
Author: Stamatios V. Kartalopoulos
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 240
Book Description
Understand the fundamentals of the emerging field of fuzzy neural networks, their applications and the most used paradigms with this carefully organized state-of-the-art textbook. Previously tested at a number of noteworthy conference tutorials, the simple numerical examples presented in this book provide excellent tools for progressive learning. UNDERSTANDING NEURAL NETWORKS AND FUZZY LOGIC offers a simple presentation and bottom-up approach that is ideal for working professional engineers, undergraduates, medical/biology majors, and anyone with a nonspecialist background. Sponsored by: IEEE Neural Networks Council
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 240
Book Description
Understand the fundamentals of the emerging field of fuzzy neural networks, their applications and the most used paradigms with this carefully organized state-of-the-art textbook. Previously tested at a number of noteworthy conference tutorials, the simple numerical examples presented in this book provide excellent tools for progressive learning. UNDERSTANDING NEURAL NETWORKS AND FUZZY LOGIC offers a simple presentation and bottom-up approach that is ideal for working professional engineers, undergraduates, medical/biology majors, and anyone with a nonspecialist background. Sponsored by: IEEE Neural Networks Council
Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
Author: Nikola K. Kasabov
Publisher: Marcel Alencar
ISBN: 0262112124
Category : Artificial intelligence
Languages : en
Pages : 581
Book Description
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Publisher: Marcel Alencar
ISBN: 0262112124
Category : Artificial intelligence
Languages : en
Pages : 581
Book Description
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
C++ Neural Networks and Fuzzy Logic
Author: Hayagriva V. Rao
Publisher:
ISBN: 9788170296942
Category : C++ (Computer program language)
Languages : en
Pages : 551
Book Description
Publisher:
ISBN: 9788170296942
Category : C++ (Computer program language)
Languages : en
Pages : 551
Book Description
Learning and Soft Computing
Author: Vojislav Kecman
Publisher: MIT Press
ISBN: 9780262112550
Category : Computers
Languages : en
Pages : 556
Book Description
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.
Publisher: MIT Press
ISBN: 9780262112550
Category : Computers
Languages : en
Pages : 556
Book Description
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.
Neural Networks and Fuzzy Systems
Author: Bart Kosko
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 488
Book Description
Written by one of the foremost experts in the field of neural networks, this is the first book to combine the theories and applications or neural networks and fuzzy systems. The book is divided into three sections: Neural Network Theory, Neural Network Applications, and Fuzzy Theory and Applications. It describes how neural networks can be used in applications such as: signal and image processing, function estimation, robotics and control, analog VLSI and optical hardware design; and concludes with a presentation of the new geometric theory of fuzzy sets, systems, and associative memories.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 488
Book Description
Written by one of the foremost experts in the field of neural networks, this is the first book to combine the theories and applications or neural networks and fuzzy systems. The book is divided into three sections: Neural Network Theory, Neural Network Applications, and Fuzzy Theory and Applications. It describes how neural networks can be used in applications such as: signal and image processing, function estimation, robotics and control, analog VLSI and optical hardware design; and concludes with a presentation of the new geometric theory of fuzzy sets, systems, and associative memories.
Fuzzy Logic for Beginners
Author: Masao Mukaidono
Publisher: World Scientific
ISBN: 9810245343
Category : Computers
Languages : en
Pages : 117
Book Description
There are many uncertainties in the real world. Fuzzy theory treats a kind of uncertainty called fuzziness, where it shows that the boundary of yes or no is ambiguous and appears in the meaning of words or is included in the subjunctives or recognition of human beings. Fuzzy theory is essential and is applicable to many systems -- from consumer products like washing machines or refrigerators to big systems like trains or subways. Recently, fuzzy theory has been a strong tool for combining new theories (called soft computing) such as genetic algorithms or neural networks to get knowledge from real data. This introductory book enables the reader to understand easily what fuzziness is and how one can apply fuzzy theory to real problems -- which explains why it was a best-seller in Japan.
Publisher: World Scientific
ISBN: 9810245343
Category : Computers
Languages : en
Pages : 117
Book Description
There are many uncertainties in the real world. Fuzzy theory treats a kind of uncertainty called fuzziness, where it shows that the boundary of yes or no is ambiguous and appears in the meaning of words or is included in the subjunctives or recognition of human beings. Fuzzy theory is essential and is applicable to many systems -- from consumer products like washing machines or refrigerators to big systems like trains or subways. Recently, fuzzy theory has been a strong tool for combining new theories (called soft computing) such as genetic algorithms or neural networks to get knowledge from real data. This introductory book enables the reader to understand easily what fuzziness is and how one can apply fuzzy theory to real problems -- which explains why it was a best-seller in Japan.
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
Author: József Dombi
Publisher: Springer Nature
ISBN: 3030722805
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
Publisher: Springer Nature
ISBN: 3030722805
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM
Author: S. RAJASEKARAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120321863
Category : Computers
Languages : en
Pages : 459
Book Description
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120321863
Category : Computers
Languages : en
Pages : 459
Book Description
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Methodologies Of Using Neural Network And Fuzzy Logic Technologies For Motor Incipient Fault Detection
Author: Mo-yuen Chow
Publisher: World Scientific
ISBN: 9814496936
Category : Computers
Languages : en
Pages : 155
Book Description
Motor monitoring, incipient fault detection, and diagnosis are important and difficult topics in the engineering field. These topics deal with motors ranging from small DC motors used in intensive care units to the huge motors used in nuclear power plants. With proper machine monitoring and fault detection schemes, improved safety and reliability can be achieved for different engineering system operations. The importance of incipient fault detection can be found in the cost saving which can be obtained by detecting potential machine failures before they occur. Non-invasive, inexpensive, and reliable fault detection techniques are often preferred by many engineers. A large number of techniques, such as expert system approaches and vibration analysis, have been developed for motor fault detection purposes. Those techniques have achieved a certain degree of success. However, due to the complexity and importance of the systems, there is a need to further improve existing fault detection techniques.A major key to the success in fault detection is the ability to use appropriate technology to effectively fuse the relevant information to provide accurate and reliable results. The advance in technology will provide opportunities for improving existing fault detection schemes. With the maturing technology of artificial neural network and fuzzy logic, the motor fault detection problem can be solved using an innovative approach based on measurements that are easily accessible, without the need for rigorous mathematical models. This approach can identify and aggregate the relevant information for accurate and reliable motor fault detection. This book will introduce the neccessary concepts of neural network and fuzzy logic, describe the advantages and challenges of using these technologies to solve motor fault detection problems, and discuss several design considerations and methodologies in applying these techniques to motor incipient fault detection.
Publisher: World Scientific
ISBN: 9814496936
Category : Computers
Languages : en
Pages : 155
Book Description
Motor monitoring, incipient fault detection, and diagnosis are important and difficult topics in the engineering field. These topics deal with motors ranging from small DC motors used in intensive care units to the huge motors used in nuclear power plants. With proper machine monitoring and fault detection schemes, improved safety and reliability can be achieved for different engineering system operations. The importance of incipient fault detection can be found in the cost saving which can be obtained by detecting potential machine failures before they occur. Non-invasive, inexpensive, and reliable fault detection techniques are often preferred by many engineers. A large number of techniques, such as expert system approaches and vibration analysis, have been developed for motor fault detection purposes. Those techniques have achieved a certain degree of success. However, due to the complexity and importance of the systems, there is a need to further improve existing fault detection techniques.A major key to the success in fault detection is the ability to use appropriate technology to effectively fuse the relevant information to provide accurate and reliable results. The advance in technology will provide opportunities for improving existing fault detection schemes. With the maturing technology of artificial neural network and fuzzy logic, the motor fault detection problem can be solved using an innovative approach based on measurements that are easily accessible, without the need for rigorous mathematical models. This approach can identify and aggregate the relevant information for accurate and reliable motor fault detection. This book will introduce the neccessary concepts of neural network and fuzzy logic, describe the advantages and challenges of using these technologies to solve motor fault detection problems, and discuss several design considerations and methodologies in applying these techniques to motor incipient fault detection.
Deep Neuro-Fuzzy Systems with Python
Author: Himanshu Singh
Publisher: Apress
ISBN: 1484253612
Category : Computers
Languages : en
Pages : 270
Book Description
Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.
Publisher: Apress
ISBN: 1484253612
Category : Computers
Languages : en
Pages : 270
Book Description
Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.