Understanding Complex Datasets

Understanding Complex Datasets PDF Author: David Skillicorn
Publisher: CRC Press
ISBN: 1584888334
Category : Computers
Languages : en
Pages : 268

Get Book Here

Book Description
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book

Understanding Complex Datasets

Understanding Complex Datasets PDF Author: David Skillicorn
Publisher: CRC Press
ISBN: 1584888334
Category : Computers
Languages : en
Pages : 268

Get Book Here

Book Description
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Algorithms and Data Structures for Massive Datasets

Algorithms and Data Structures for Massive Datasets PDF Author: Dzejla Medjedovic
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting

Geographic Data Mining and Knowledge Discovery

Geographic Data Mining and Knowledge Discovery PDF Author: Harvey J. Miller
Publisher: CRC Press
ISBN: 1420073982
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal DatabasesSince the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has bee

Data Science for Beginners: A Hands-On Guide to Big Data

Data Science for Beginners: A Hands-On Guide to Big Data PDF Author: Michael Roberts
Publisher: Richards Education
ISBN:
Category : Computers
Languages : en
Pages : 151

Get Book Here

Book Description
Unlock the power of data with Data Science for Beginners: A Hands-On Guide to Big Data. This comprehensive guide introduces you to the world of data science, covering everything from the basics of data collection and preparation to advanced machine learning techniques and practical data science projects. Whether you're new to the field or looking to enhance your skills, this book provides step-by-step instructions, real-world examples, and best practices to help you succeed. Discover the tools and technologies used by data scientists, learn how to analyze and visualize data, and explore the vast opportunities that data science offers in various industries. Start your data science journey today and transform data into actionable insights.

Systems Biology and Omics Approaches to Understand Complex Diseases Biology

Systems Biology and Omics Approaches to Understand Complex Diseases Biology PDF Author: Amit Kumar Yadav
Publisher: Frontiers Media SA
ISBN: 2889760782
Category : Science
Languages : en
Pages : 183

Get Book Here

Book Description


Unlocking the Power of Data: A Beginner's Guide to Data Analysis

Unlocking the Power of Data: A Beginner's Guide to Data Analysis PDF Author: Balasubramanian Thiagarajan
Publisher: Otolaryngology online
ISBN: 935913242X
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
Welcome to the world of data analysis! In today's data-driven era, the ability to effectively analyze and derive insights from data has become a vital skill for individuals and organizations across various domains. This book aims to serve as your comprehensive guide to understanding and performing data analysis, from the fundamental concepts to the practical applications. Chapter 1 introduces you to the fascinating realm of data analysis. We delve into the importance of data analysis in decision-making processes and highlight its role in gaining valuable insights and making informed choices. Understanding the power of data analysis sets the foundation for your journey ahead. Chapter 2 focuses on data entry, a crucial step in the data analysis process. We explore different methods and techniques for entering data accurately, ensuring the reliability and integrity of your dataset. Effective data entry practices are essential for obtaining meaningful results. In Chapter 3, we explore the different types of data analysis. Whether it's exploratory, descriptive, diagnostic, predictive, or prescriptive analysis, you will gain an understanding of each type and when to employ them in various scenarios. This chapter equips you with the knowledge to choose the appropriate analysis technique for your specific needs. To lay the groundwork for your data analysis journey, Chapter 4 familiarizes you with the basic terminology commonly used in the field. From variables and observations to measures of central tendency and variability, this chapter ensures you have a solid grasp of the foundational concepts necessary for effective data analysis. Chapter 5 focuses on setting up your data analysis environment. We guide you through the process of installing the necessary software and configuring your data workspace. Creating an optimal environment is crucial for seamless and efficient data analysis. Data preprocessing takes center stage in Chapter 6. We delve into the essential steps of data cleaning, transformation, and handling missing values. By mastering these techniques, you will be able to prepare your data for analysis, ensuring its quality and usability. In Chapter 7, we explore the exciting world of data exploration and visualization. Understanding the distribution of data and identifying relationships between variables are key aspects of uncovering meaningful insights. We delve into creating various charts and graphs to visually represent data, aiding in its interpretation and analysis. Chapter 8 introduces you to statistical analysis techniques. Descriptive statistics help us summarize and describe data, while inferential statistics enable us to make inferences and draw conclusions about populations based on sample data. Additionally, hypothesis testing allows us to validate our assumptions and test specific predictions. Predictive analytics takes the spotlight in Chapter 9. We explore techniques such as linear and logistic regression, decision trees, and clustering algorithms. These techniques empower you to make predictions and forecasts based on historical data, providing valuable insights for decision-making. Chapter 10 is dedicated to machine learning, an exciting field within data analysis. We introduce the fundamentals of machine learning, including supervised and unsupervised learning algorithms. Understanding these concepts opens doors to more advanced data analysis techniques and applications. Ethics in data analysis takes center stage in Chapter 11. We delve into the critical considerations of privacy concerns, data bias, and fairness in data analysis. Ethical data practices are crucial to ensure the responsible and ethical use of data in analysis. Chapter 12 explores the wide-ranging applications of data analysis. We delve into the domains of business analytics, healthcare analytics, sports analytics, and social media analytics, highlighting how data analysis drives insights and informs decision-making in these fields. Finally, Chapter 13 serves as a conclusion and sets you on the path for further learning and development. We recap the key concepts covered in the book, provide tips for advancing your data analysis skills, and discuss future trends and innovations in the field. We hope this book serves as a valuable resource in your data analysis journey. Whether you are a student, professional, or data enthusiast, we believe that understanding and applying data analysis.

Automated Data Analytics

Automated Data Analytics PDF Author: Soraya Sedkaoui
Publisher: John Wiley & Sons
ISBN: 1786309785
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
The human mind is endowed with a remarkable capacity for creative synthesis between intuition and reason; this mental alchemy is the source of genius. A new synergy is emerging between human ingenuity and the computational capacity of generative AI models. Automated Data Analytics focuses on this fruitful collaboration between the two to unlock the full potential of data analysis. Together, human ethics and algorithmic productivity have created an alloy stronger than the sum of its parts. The future belongs to this symbiosis between heart and mind, human and machine. If we succeed in harmoniously combining our strengths, it will only be a matter of time before we discover new analytical horizons. This book sets out the foundations of this promising partnership, in which everyone makes their contribution to a common work of considerable scope. History is being forged before our very eyes. It is our responsibility to write it wisely, and to collectively pursue the ideal of augmented intelligence progress.

Computer Vision – ECCV 2024

Computer Vision – ECCV 2024 PDF Author: Aleš Leonardis
Publisher: Springer Nature
ISBN: 3031732294
Category :
Languages : en
Pages : 572

Get Book Here

Book Description


Mastering NLP from Foundations to LLMs

Mastering NLP from Foundations to LLMs PDF Author: Lior Gazit
Publisher: Packt Publishing Ltd
ISBN: 1804616389
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.