Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling

Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description
Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling

Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description
Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling PDF Author: Yan Wang
Publisher: Woodhead Publishing
ISBN: 008102942X
Category : Technology & Engineering
Languages : en
Pages : 606

Get Book Here

Book Description
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. Synthesizes available UQ methods for materials modeling Provides practical tools and examples for problem solving in modeling material behavior across various length scales Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling PDF Author: Yan Wang
Publisher: Woodhead Publishing Limited
ISBN: 0081029411
Category : Materials science
Languages : en
Pages : 604

Get Book Here

Book Description
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification of Multi-Physics Modeling of Nuclear Reactors PDF Author: Maria Avramova
Publisher: Woodhead Publishing Series in
ISBN: 9780128149546
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover solution verification, the frontier discipline of multi-physics coupling verification, model validation and its applications to single and multi-scale models, and uncertainty quantification. This essential guide will greatly assist engineers, scientists, regulators and students in applying rigorous verification, validation and uncertainty quantification methodologies to the M&S tools used in the industry. The book contains a strong focus on the verification and validation procedures required for the emerging multi-physics M&S tools that have great potential for use in the licensing of new reactors, as well as for power uprating and life extensions of operating reactors. Uniquely--and crucially for nuclear engineers--demonstrates the application of verification, validation and uncertainty methodologies to the modeling and simulation (M&S) of nuclear reactors Equips the reader to develop a rigorously defensible validation process irrespective of the particular M&S tool used Brings the audience up-to-speed on validation methods for traditional M&S tools Extends the discussion to the emerging area of validation of multi-physics and multi-scale nuclear reactor simulations

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis

Multiscale and Multiphysics Modeling of Nuclear Facilities with Coupled Codes and its Uncertainty Quantification and Sensitivity Analysis PDF Author: Chunyu Liu
Publisher: Springer Spektrum
ISBN: 9783658434212
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
In this book, the author provides a deep study into multiscale and multiphysics modeling of nuclear facilities, underscoring the critical role of uncertainty quantification and sensitivity analysis to ensure the confidence in the numerical results and to identify the system characteristics. Through an in-depth study of the liquid metal cooling system from the TALL-3D loop to the SMDFR core, the research highlights the natural circulation instability, strong coupling effects, perturbation tolerance, and system stability. The culmination of the research is the formulation of an optimized uncertainty-based control scheme, demonstrating its versatility beyond the nuclear domain to other energy sectors. This groundbreaking work not only advances the comprehension and utilization of coupling schemes and uncertainty methodologies in nuclear system modeling but also adeptly bridges the theoretical constructs with tangible application, positioning itself as an indispensable resource for design, safety analysis, and advanced numerical modeling in the broader energy sector.

Uncertainty Quantification

Uncertainty Quantification PDF Author: Christian Soize
Publisher: Springer
ISBN: 3319543393
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Uncertainty Quantification in Multiscale Atomistic-Continuum Models

Uncertainty Quantification in Multiscale Atomistic-Continuum Models PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Get Book Here

Book Description


Fundamentals of Uncertainty Quantification for Engineers

Fundamentals of Uncertainty Quantification for Engineers PDF Author: Yan Wang
Publisher: Elsevier
ISBN: 9780443136610
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Fundamentals of Uncertainty Quantification for Engineers provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples, implementation details, and practical exercises to reinforce the concepts outlined in the book. It starts with review of the history of probability theory and recent development of UQ methods in the domains of applied mathematics and data science. Major concepts of probability axioms, conditional probability, and Bayes' rule are discussed and examples of probability distributions in parametric data analysis, reliability, risk analysis, and materials informatics are included. Random processes, sampling methods, and surrogate modeling techniques including multivariate polynomial regression, Gaussian process regression, multi-fidelity surrogate, support-vector machine, and decision tress are also covered. Methods for model selection, calibration, and validation are introduced next, followed by chapters on sensitivity analysis, stochastic expansion methods, Markov models, and non-probabilistic methods. The book concludes with a chapter describing the methods that can be used to predict UQ in systems, such as Monte Carlo, stochastic expansion, upscaling, Langevin dynamics, and inverse problems, with example applications in multiscale modeling, simulations, and materials design.

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors

Improved Best Estimate Plus Uncertainty Methodology Including Advanced Validation Concepts to License Evolving Nuclear Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M & S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost saving purposes by showing further testing wold not enhance the quality of the validation of predictive tools. The proposed methodology is at a conceptual level. When matured and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty licensing methodology that USNRC developed previously. In order to come to that level of maturity it is necessary to communicate the methodology to scientific, design and regulatory stakeholders for discussion and debates. This paper is the first step to establish this communication.