Uncertainty in Biology

Uncertainty in Biology PDF Author: Liesbet Geris
Publisher: Springer
ISBN: 3319212966
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.

Uncertainty in Biology

Uncertainty in Biology PDF Author: Liesbet Geris
Publisher: Springer
ISBN: 3319212966
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.

Uncertainty

Uncertainty PDF Author: Kostas Kampourakis
Publisher: Oxford University Press, USA
ISBN: 0190871660
Category : Philosophy
Languages : en
Pages : 273

Get Book Here

Book Description
Anti-evolutionists, climate denialists, and anti-vaxxers, among others, question some of the best-established scientific findings by referring to the uncertainties in these areas of research. Uncertainty: How It Makes Science Advance shows that uncertainty is an inherent feature of science that makes it advance by motivating further research.

Cell Biology by the Numbers

Cell Biology by the Numbers PDF Author: Ron Milo
Publisher: Garland Science
ISBN: 1317230698
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid

Quantitative Biology

Quantitative Biology PDF Author: Brian Munsky
Publisher: MIT Press
ISBN: 0262347113
Category : Science
Languages : en
Pages : 729

Get Book Here

Book Description
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

Uncertainty in Pharmacology

Uncertainty in Pharmacology PDF Author: Adam LaCaze
Publisher: Springer Nature
ISBN: 3030291790
Category : Medical
Languages : en
Pages : 475

Get Book Here

Book Description
This volume covers a wide range of topics concerning methodological, epistemological, and regulatory-ethical issues around pharmacology. The book focuses in particular on the diverse sources of uncertainty, the different kinds of uncertainty that there are, and the diverse ways in which these uncertainties are (or could be) addressed. Compared with the more basic sciences, such as chemistry or biology, pharmacology works across diverse observable levels of reality: although the first step in the causal chain leading to the therapeutic outcome takes place at the biochemical level, the end-effect is a clinically observable result—which is influenced not only by biological actions, but also psychological and social phenomena. Issues of causality and evidence must be treated with these specific aspects in mind. In covering these issues, the book opens up a common domain of investigation which intersects the deeply intertwined dimensions of pharmacological research, pharmaceutical regulation and the related economic environment. The book is a collective endeavour with in-depth contributions from experts in pharmacology, philosophy of medicine, statistics, scientific methodology, formal and social epistemology, working in constant dialogue across disciplinary boundaries.

Computational Methods in Systems Biology

Computational Methods in Systems Biology PDF Author: Olivier Roux
Publisher: Springer
ISBN: 3319234013
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 13th International Conference on Computational Methods in Systems Biology, CMSB 2015, held in Nantes, France, in September 2015. The 20 full papers and 2 short papers presented were carefully reviewed and selected from 43 full and 4 short paper submissions. The papers cover a wide range of topics in the analysis of biological systems, networks and data such as model checking, stochastic analysis, hybrid systems, circadian clock, time series data, logic programming, and constraints solving ranging from intercellular to multiscale.

Probabilistic Boolean Networks

Probabilistic Boolean Networks PDF Author: Ilya Shmulevich
Publisher: SIAM
ISBN: 0898716926
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.

Mathematics of Evolution and Phylogeny

Mathematics of Evolution and Phylogeny PDF Author: Olivier Gascuel
Publisher: OUP Oxford
ISBN: 9780191513732
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
This book considers evolution at different scales: sequences, genes, gene families, organelles, genomes and species. The focus is on the mathematical and computational tools and concepts, which form an essential basis of evolutionary studies, indicate their limitations, and give them orientation. Recent years have witnessed rapid progress in the mathematics of evolution and phylogeny, with models and methods becoming more realistic, powerful, and complex. Aimed at graduates and researchers in phylogenetics, mathematicians, computer scientists and biologists, and including chapters by leading scientists: A. Bergeron, D. Bertrand, D. Bryant, R. Desper, O. Elemento, N. El-Mabrouk, N. Galtier, O. Gascuel, M. Hendy, S. Holmes, K. Huber, A. Meade, J. Mixtacki, B. Moret, E. Mossel, V. Moulton, M. Pagel, M.-A. Poursat, D. Sankoff, M. Steel, J. Stoye, J. Tang, L.-S. Wang, T. Warnow, Z. Yang, this book of contributed chapters explains the basis and covers the recent results in this highly topical area.

Gene Drives on the Horizon

Gene Drives on the Horizon PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309437873
Category : Science
Languages : en
Pages : 231

Get Book Here

Book Description
Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.

Decisions, Uncertainty, and the Brain

Decisions, Uncertainty, and the Brain PDF Author: Paul W. Glimcher
Publisher: MIT Press
ISBN: 9780262572279
Category : Medical
Languages : en
Pages : 404

Get Book Here

Book Description
In this provocative book, Paul Glimcher argues that economic theory may provide an alternative to the classical Cartesian model of the brain and behavior. Glimcher argues that Cartesian dualism operates from the false premise that the reflex is able to describe behavior in the real world that animals inhabit. A mathematically rich cognitive theory, he claims, could solve the most difficult problems that any environment could present, eliminating the need for dualism by eliminating the need for a reflex theory. Such a mathematically rigorous description of the neural processes that connect sensation and action, he explains, will have its roots in microeconomic theory. Economic theory allows physiologists to define both the optimal course of action that an animal might select and a mathematical route by which that optimal solution can be derived. Glimcher outlines what an economics-based cognitive model might look like and how one would begin to test it empirically. Along the way, he presents a fascinating history of neuroscience. He also discusses related questions about determinism, free will, and the stochastic nature of complex behavior.