Uncertainty and Sensitivity Analysis of a Fire-induced Accident Scenario Involving Binary Variables and Mechanistic Codes

Uncertainty and Sensitivity Analysis of a Fire-induced Accident Scenario Involving Binary Variables and Mechanistic Codes PDF Author: Mark Aaron Minton
Publisher:
ISBN:
Category :
Languages : en
Pages : 87

Get Book Here

Book Description
In response to the transition by the United States Nuclear Regulatory Commission (NRC) to a risk-informed, performance-based fire protection rulemaking standard, Fire Probabilistic Risk Assessment (PRA) methods have been improved, particularly in the areas of advanced fire modeling and computational methods. As the methods for the quantification of fire risk are improved, the methods for the quantification of the uncertainties must also be improved. In order to gain a more meaningful insight into the methods currently in practice, it was decided that a scenario incorporating the various elements of uncertainty specific to a fire PRA would be analyzed. The NRC has validated and verified five fire models to simulate the effects of fire growth and propagation in nuclear power plants. Although these models cover a wide range of sophistication, epistemic uncertainties resulting from the assumptions and approximations used within the model are always present. The uncertainty of a model prediction is not only dependent on the uncertainties of the model itself, but also on how the uncertainties in input parameters are propagated throughout the model. Inputs to deterministic fire models are often not precise values, but instead follow statistical distributions. The fundamental motivation for assessing model and parameter uncertainties is to combine the results in an effort to calculate a cumulative probability of exceeding a given threshold. This threshold can be for equipment damage, time to alarm, habitability of spaces, etc. Fire growth and propagation is not the only source of uncertainty present in a fire-induced accident scenario. Statistical models are necessary to develop estimates of fire ignition frequency and the probability that a fire will be suppressed. Human Reliability Analysis (HRA) is performed to determine the probability that operators will correctly perform manual actions even with the additional complications of a fire present. Fire induced Main Control Room (MCR) abandonment scenarios are a significant contributor to the total Core Damage Frequency (CDF) estimate of many operating nuclear power plants. Many of the resources spent on fire PRA are devoted to quantification of the probability that a fire will force operators to abandon the MCR and take actions from a remote location. However, many current PRA practitioners feel that effect of MCR fires have been overstated. This report details the simultaneous application of state-of-the-art model and parameter uncertainty techniques to develop a defensible distribution of the probability of a forced MCR abandonment caused by a fire within a MCR benchboard. These results are combined with the other elements of uncertainty present in a fire-induced MCR abandonment scenario to develop a CDF distribution that takes into account the interdependencies between the factors. In addition, the input factors having the strongest influence on the final results are identified so that operators, regulators, and researchers can focus their efforts to mitigate the effects of this class of fire-induced accident scenario.

Uncertainty and Sensitivity Analysis of a Fire-induced Accident Scenario Involving Binary Variables and Mechanistic Codes

Uncertainty and Sensitivity Analysis of a Fire-induced Accident Scenario Involving Binary Variables and Mechanistic Codes PDF Author: Mark Aaron Minton
Publisher:
ISBN:
Category :
Languages : en
Pages : 87

Get Book Here

Book Description
In response to the transition by the United States Nuclear Regulatory Commission (NRC) to a risk-informed, performance-based fire protection rulemaking standard, Fire Probabilistic Risk Assessment (PRA) methods have been improved, particularly in the areas of advanced fire modeling and computational methods. As the methods for the quantification of fire risk are improved, the methods for the quantification of the uncertainties must also be improved. In order to gain a more meaningful insight into the methods currently in practice, it was decided that a scenario incorporating the various elements of uncertainty specific to a fire PRA would be analyzed. The NRC has validated and verified five fire models to simulate the effects of fire growth and propagation in nuclear power plants. Although these models cover a wide range of sophistication, epistemic uncertainties resulting from the assumptions and approximations used within the model are always present. The uncertainty of a model prediction is not only dependent on the uncertainties of the model itself, but also on how the uncertainties in input parameters are propagated throughout the model. Inputs to deterministic fire models are often not precise values, but instead follow statistical distributions. The fundamental motivation for assessing model and parameter uncertainties is to combine the results in an effort to calculate a cumulative probability of exceeding a given threshold. This threshold can be for equipment damage, time to alarm, habitability of spaces, etc. Fire growth and propagation is not the only source of uncertainty present in a fire-induced accident scenario. Statistical models are necessary to develop estimates of fire ignition frequency and the probability that a fire will be suppressed. Human Reliability Analysis (HRA) is performed to determine the probability that operators will correctly perform manual actions even with the additional complications of a fire present. Fire induced Main Control Room (MCR) abandonment scenarios are a significant contributor to the total Core Damage Frequency (CDF) estimate of many operating nuclear power plants. Many of the resources spent on fire PRA are devoted to quantification of the probability that a fire will force operators to abandon the MCR and take actions from a remote location. However, many current PRA practitioners feel that effect of MCR fires have been overstated. This report details the simultaneous application of state-of-the-art model and parameter uncertainty techniques to develop a defensible distribution of the probability of a forced MCR abandonment caused by a fire within a MCR benchboard. These results are combined with the other elements of uncertainty present in a fire-induced MCR abandonment scenario to develop a CDF distribution that takes into account the interdependencies between the factors. In addition, the input factors having the strongest influence on the final results are identified so that operators, regulators, and researchers can focus their efforts to mitigate the effects of this class of fire-induced accident scenario.

Model uncertainty, sensitivity analysis, and scenario evaluation

Model uncertainty, sensitivity analysis, and scenario evaluation PDF Author: Carl M. Harris
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Get Book Here

Book Description


Uncertainty characterization in risk analysis for decision-making practice

Uncertainty characterization in risk analysis for decision-making practice PDF Author: Enrico Zio
Publisher: FonCSI
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 63

Get Book Here

Book Description
This document provides an overview of sources of uncertainty in probabilistic risk analysis. For each phase of the risk analysis process (system modeling, hazard identification, estimation of the probability and consequences of accident sequences, risk evaluation), the authors describe and classify the types of uncertainty that can arise. The document provides : a description of the risk assessment process, as used in hazardous industries such as nuclear power and offshore oil and gas extraction ; a classification of sources of uncertainty (both epistemic and aleatory) and a description of techniques for uncertainty representation ; a description of the different steps involved in a Probabilistic Risk Assessement (PRA) or Quantitative Risk Assessment (QRA), and an analysis of the types of uncertainty that can affect each of these steps ; annexes giving an overview of a number of tools used during probabilistic risk assessment, including the HAZID technique, fault trees and event tree analysis.

Fire Data Analysis Handbook

Fire Data Analysis Handbook PDF Author:
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 199

Get Book Here

Book Description


Uncertainty and Sensitivity Analysis for Long-running Computer Codes

Uncertainty and Sensitivity Analysis for Long-running Computer Codes PDF Author: Dustin R. Langewisch
Publisher:
ISBN:
Category :
Languages : en
Pages : 158

Get Book Here

Book Description
This thesis presents a critical review of existing methods for performing probabilistic uncertainty and sensitivity analysis for complex, computationally expensive simulation models. Uncertainty analysis (UA) methods reviewed include standard Monte Carlo simulation, Latin Hypercube sampling, importance sampling, line sampling, and subset simulation. Sensitivity analysis (SA) methods include scatter plots, Monte Carlo filtering, regression analysis, variance-based methods (Sobol' sensitivity indices and Sobol' Monte Carlo algorithms), and Fourier amplitude sensitivity tests. In addition, this thesis reviews several existing metamodeling techniques that are intended provide quick-running approximations to the computer models being studied. Because stochastic simulation-based UA and SA rely on a large number (e.g., several thousands) of simulations, metamodels are recognized as a necessary compromise when UA and SA must be performed with long-running (i.e., several hours or days per simulation) computational models. This thesis discusses the use of polynomial Response Surfaces (RS), Artificial Neural Networks (ANN), and Kriging/Gaussian Processes (GP) for metamodeling. Moreover, two methods are discussed for estimating the uncertainty introduced by the metamodel. The first of these methods is based on a bootstrap sampling procedure, and can be utilized for any metamodeling technique.

Sensitivity and Uncertainty Analysis

Sensitivity and Uncertainty Analysis PDF Author: Dan G. Cacuci
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Strengthening Forensic Science in the United States

Strengthening Forensic Science in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309142393
Category : Law
Languages : en
Pages : 348

Get Book Here

Book Description
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.

Fire Effects Guide

Fire Effects Guide PDF Author:
Publisher:
ISBN:
Category : Biotic communities
Languages : en
Pages : 282

Get Book Here

Book Description


SFPE Handbook of Fire Protection Engineering

SFPE Handbook of Fire Protection Engineering PDF Author: Philip J. DiNenno
Publisher: National Fire Protection Association (NFPA)
ISBN: 9780877653530
Category : Building, Fireproof
Languages : en
Pages : 829

Get Book Here

Book Description


NUREG/CR.

NUREG/CR. PDF Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 144

Get Book Here

Book Description