Ultrafast Two-dimensional Infrared Spectroscopy of Hydrogen-bonded Base Pairs and Hydrated DNA

Ultrafast Two-dimensional Infrared Spectroscopy of Hydrogen-bonded Base Pairs and Hydrated DNA PDF Author: Ming Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Get Book Here

Book Description

Ultrafast Two-dimensional Infrared Spectroscopy of Hydrogen-bonded Base Pairs and Hydrated DNA

Ultrafast Two-dimensional Infrared Spectroscopy of Hydrogen-bonded Base Pairs and Hydrated DNA PDF Author: Ming Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Get Book Here

Book Description


Ultrafast Infrared Vibrational Spectroscopy

Ultrafast Infrared Vibrational Spectroscopy PDF Author: Michael D. Fayer
Publisher: CRC Press
ISBN: 1466510137
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.

Extending Two-dimensional Infrared Spectroscopy to Study DNA Structure with Native and Non-native Infrared Probes

Extending Two-dimensional Infrared Spectroscopy to Study DNA Structure with Native and Non-native Infrared Probes PDF Author: Amber T. Krummel
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description


Studies of the Structure and Ultrafast Dynamics of DNA Using 2D-IR Spectroscopy

Studies of the Structure and Ultrafast Dynamics of DNA Using 2D-IR Spectroscopy PDF Author: Gordon Hithell
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this thesis, two-dimensional infrared spectroscopy (2D-IR) spectroscopy is used to study changes in structure and dynamics in deoxyribonucleic acid (DNA) containing only Adenine-Thymine (AT) base pairs. The aims of the studies in this thesis are to demonstrate the ability of 2D-IR spectroscopy to extract unique dynamic information, not accessible via established experimental methods from nucleic acid systems, as it has for protein- and peptide-based systems. The underlying theory of both linear and nonlinear 2D-IR spectroscopies is described in the initial Chapter, following this the details of the types of information already obtained using these methods from DNA in the current literature is presented.

Ultrafast Dynamics of Phospholipid-Water Interfaces

Ultrafast Dynamics of Phospholipid-Water Interfaces PDF Author: René Costard
Publisher: Springer
ISBN: 3319220667
Category : Science
Languages : en
Pages : 112

Get Book Here

Book Description
This thesis presents a highly innovative study of the ultrafast structural and vibrational dynamics of hydrated phospholipids, the basic constituents of cell membranes. As a novel approach to the water-phospholipid interface, the author studies phosphate vibrations using the most advanced methods of nonlinear vibrational spectroscopy, including femtosecond two-dimensional infrared spectroscopy. He shows for the first time that the structure of interfacial water undergoes very limited fluctuations on a 300 fs time scale and that the lifetimes of hydrogen bonds with the phospholipid are typically longer than 10 ps. Such properties originate from the steric hindrance of water fluctuations at the interface and the orienting action of strong electric fields from the phospholipid head group dipoles. In an extensive series of additional experiments, the vibrational lifetimes of the different vibrations and the processes of energy dissipation are elucidated in detail.

The Molecular Dynamics of Hydrogen-bonding Explored with Broadband Two Dimensional Infrared Spectroscopy

The Molecular Dynamics of Hydrogen-bonding Explored with Broadband Two Dimensional Infrared Spectroscopy PDF Author: Luigi De Marco (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description
It is no overstatement to claim that hydrogen bonding is the most important intermolecular interaction. On a day-to-day basis, we encounter the peculiar effects of hydrogen bonding in liquid water; however, it is well appreciated that hydrogen bonding is immensely important in many contexts and, in particular, in biological ones. Despite this apparent significance, a general molecular picture of the dynamics of hydrogen-bonding systems is lacking. Over the last two decades, ultrafast multidimensional infrared spectroscopy has emerged as powerful technique for studying molecular dynamics in the condensed phase. By taking advantage of the complex relationship between a molecular oscillator's frequency and its environmental structure, we may understand molecular dynamics from an experimental perspective. However, the study of hydrogen bonding poses a significant technical challenge in that the interaction gives rise to broad resonances in the mid-infrared absorption spectrum. Traditional methods for generating short pulses of mid-infrared light are fundamentally limited in the bandwidth they can produce. Oftentimes, the width of a hydrogen-bonded oscillator's absorption resonance exceeds the broadest bandwidth mid-infrared laser pulse. In this thesis, I describe our development and use of a novel source of short, broadband mid-infrared light pulses that span the entire region of high-frequency molecular vibrations. We use this source as a probe in two-dimensional infrared spectroscopy experiments to study a wide variety hydrogen-bonding systems, including hydrogen-bonded dimers and protein films, with a particular emphasis on liquid water. Across these systems, we observe fascinating trends in the changes in molecular dynamics with increasing complexity of hydrogen bonding. In particular, we find experimental evidence for large deformations of the nuclear potential energy surface, giving rise to extremely anharmonic and collective dynamics. The effect is most dramatic in liquid water, where the rapidly fluctuating hydrogen-bond network results in vibrational excitons wherein O-H stretching motion is delocalized over multiple molecules. In this case, the nuclear potential energy surface is so complex that even simple changes in the mass of the oscillators result in qualitatively different dynamics.

Ultrafast Vibrational Dynamics of Hydrated DNA

Ultrafast Vibrational Dynamics of Hydrated DNA PDF Author: Lukasz Szyc
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838130989
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
Biochemical processes in living organisms predominantly take place in aqueous environments where the structure and function of biomolecules are greatly modulated through interactions with water. One and two-dimensional infrared spectroscopy provides rich structural information since each chemical structure exhibits a unique set of vibrational frequencies. However, following the fastest changes of the DNA hydration shell geometries, occurring in the time domain below 1ps, can only be achieved using ultrafast vibrational spectroscopy. The author first provides a short introduction to the field of nonlinear spectroscopy, in particular the formalism and methodology of the pump-probe technique is explained. In the main part of this book, ukasz Szyc discusses the experiments he performed on base-pair model systems and adenine-thymine oligomers aimed at understanding the vibrational dynamics and couplings in DNA at different levels of hydration, as well as establishing the role of water in the dissipation of excess energy originating from the decay of electronic and/or vibrational excitations in DNA molecules.

Encyclopedia of Biophysics

Encyclopedia of Biophysics PDF Author: Gordon Roberts
Publisher: Springer
ISBN: 9783642167119
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems. In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biological more than from a technique-oriented physical/chemical perspective. Thus the Encyclopedia is intended to provide a resource both for biophysicists interested in methods beyond those used in their immediate sub-discipline and for those readers who are approaching biophysics from either a physical or biological background.

Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy

Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy PDF Author: Rongfeng Yuan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Water is one of the most important substances in the world. It is used in a wide range of technologies and is an essential ingredient in all living cells we know today. The structure of water molecule is simple, yet it can form extended and versatile hydrogen bond (HB) network. This ability gives water extraordinary properties, such as high boiling and melting point. At the same time, the hydrogen bond network is not static. The constant breaking and re-forming of hydrogen bond occurs on the picosecond timescale. This dynamic network facilitates many functions of water, including ions solvation, protein folding and electricity conduction. Understanding the structure and dynamics of these processes is therefore of great importance. Ultrafast infrared (IR) spectroscopies offer a great method for accessing the sub-picosecond to picoseconds dynamics while a system in an electronic ground state. During the past two decades, hydrogen bond dynamics has been investigated extensively using ultrafast IR spectroscopies. But many questions still exist such as the effect of ions and confinement on the hydrogen bonding dynamics and the relation between the anomalous proton diffusion in dilute solution and hydrogen bonding. In Chapter 3, we examined the nature of molecular anion hydrogen bonding. The CN stretch of selenocyanate anions (SeCN-) was used as the vibrational probe in heavy water D2O. We observed the non-Condon effect on the CN stretch whose transition dipole changes with the strength of hydrogen bonding with water. In addition, HB rearrangement dynamics reported by SeCN- is almost the same as was that of the OH stretch of HOD molecules. This result shows that this anion does not perturb the surrounding HB network significantly in the low salt concentration solution. This ionic perspective is important and complements the results using OD or OH stretch of HOD molecules, which can only probe the effect of ions in a high salt concentration condition. In Chapter 4, we used SeCN- as the probe to examine water dynamics in confinement, and I focused on the nano waterpool formed in reverse micelles. The water pool is surrounded by surfactants which are further solvated by organic hydrophobic solvents. For large reverse micelle whose diameter is larger than 4 nm, the water pool is usually divided into two regions: the core region where water dynamics is like that in pure water and the interface region where water dynamics is slowed significant due to the confinement. Here we used ultrafast IR spectroscopies to measure the orientational relaxation of SeCN-, which reflects its interaction with water molecules and how "rigid" the HB network is. Based on the comparison between linear IR decomposition and ultrafast anisotropy dynamics, we proposed a three-component model of water in large reverse micelles. The interface component should be further separated into two layers. One layer corresponds to water in contact with the surfactant head group and has very slow reorientation. The other layer corresponds to water molecules whose coordinating structure still resembles that of bulk but the dynamics is slowed down due to the perturbation from confinement. In Chapter 5 and 6, hydrogen bonding dynamics in concentrated salt and acid solutions were investigated. Through electrochemical method, it was found decades ago that proton has extraordinary ion mobility, about 6 times larger than that of cations of similar sizse, such as sodium, ammonium or lithium. The great difference between them results from the cation transport mechanism. In dilute solution, the main transport mechanism of proton is through relay mechanism where the identity of proton transfers from one water molecule to another. This minimizes the physical diffusion of the atoms and greatly increases the proton mobility. The mechanism is generally called Grotthuss mechanism, which was came up with by Grotthuss in 1806 though not on the molecular level. However, the step time of a single proton transfer event between two water molecules is difficult to observe experimentally. Here we used the CN stretch of methyl thiocyanate (MeSCN) as the vibrational probe. In concentrated hydrochloric solutions, it has two frequency resolved states. One state refers to water hydrogen bonded to the nitrogen lone pair while the other state corresponds to hydronium ion hydrogen bonded to the CN. Chemical exchange phenomenon was observed between these two states. Ab initio simulation done by our collaborator shows that the proton hopping is the dominate mechanism for chemical exchange. The comparison experiment done in lithium chloride solution provides further contrast between hydronium and other metal ions. Therefore, we were able to track proton hopping in a time-resolved manner for the first time. Extrapolation to the dilute limit demonstrates that the HB rearrangement in pure water is the driving force of proton hopping in dilute solution.

Hydrogen Bonding and Transfer in the Excited State

Hydrogen Bonding and Transfer in the Excited State PDF Author: Ke-Li Han
Publisher: John Wiley & Sons
ISBN: 1119972922
Category : Science
Languages : en
Pages : 1229

Get Book Here

Book Description
This book gives an extensive description of the state-of-the-art in research on excited-state hydrogen bonding and hydrogen transfer in recent years. Initial chapters present both the experimental and theoretical investigations on the excited-state hydrogen bonding structures and dynamics of many organic and biological chromophores. Following this, several chapters describe the influences of the excited-state hydrogen bonding on various photophysical processes and photochemical reactions, for example: hydrogen bonding effects on fluorescence emission behaviors and photoisomerization; the role of hydrogen bonding in photosynthetic water splitting; photoinduced electron transfer and solvation dynamics in room temperature ionic liquids; and hydrogen bonding barrier crossing dynamics at bio-mimicking surfaces. Finally, the book examines experimental and theoretical studies on the nature and control of excited-state hydrogen transfer in various systems. Hydrogen Bonding and Transfer in the Excited State is an essential overview of this increasingly important field of study, surveying the entire field over 2 volumes, 40 chapters and 1200 pages. It will find a place on the bookshelves of researchers in photochemistry, photobiology, photophysics, physical chemistry and chemical physics.