U-Pb Detrital Zircon Geochronology, Sandstone Modal Composition, and Paleoflow Trends from Upper Cretaceous (Cenomanian-Campanian) Nonmarine Strata in Southern New Mexico

U-Pb Detrital Zircon Geochronology, Sandstone Modal Composition, and Paleoflow Trends from Upper Cretaceous (Cenomanian-Campanian) Nonmarine Strata in Southern New Mexico PDF Author: Cody John Stopka
Publisher:
ISBN:
Category :
Languages : en
Pages : 500

Get Book Here

Book Description
The Cordilleran foreland basin is located in the western part of North America and stretches from the Canadian Arctic to parts of southern Mexico and was active from the Late Jurassic to Late Cretaceous. Presented here are U-Pb detrital zircon ages, sandstone modal composition, and paleocurrent measurements from Upper Cretaceous (Cenomanian- Campanian) nonmarine strata of the Dakota Sandstone, Tres Hermanos Formation, and Crevasse Canyon Formation (Lower Member and Ash Canyon Member) located in the southernmost portions of the Sevier foreland basin in southern New Mexico. The Dakota Sandstone is dominated by monocrystalline quartz (84%) with volcanic and metamorphic lithic grains (15%). Paleoflow trends show east-directed (108°) to northeast-directed flow (50°). Detrital zircon age peaks occur at 1732, 1651, 1416, 1050, 626, 412, 230, and 103 Ma. The Tres Hermanos Formation is composed primarily of monocrystalline quartz (63%) with volcanic and metamorphic lithic grains (27%). Paleoflow trends predominantly reflect east-directed (93-109°) and southeast-directed (166°) flow. Peak detrital zircon ages occur at 1709, 1420, 1085, 169, and 94 Ma. The Lower Member of the Crevasse Canyon Formation is composed of monocrystalline quartz (50%) along with volcanic and metamorphic lithic grains (41%). Paleoflow trends show primarily east-directed flow (100°). Detrital zircon age peaks occur at 1702, 1420, 1067, 167, and 91 Ma. The Ash Canyon Member of the Crevasse Canyon Formation is composed of monocrystalline quartz (48%) with volcanic and metamorphic lithic grains (46%). Paleoflow trends show a east- to southeast-directed flow (108-118°). Peak detrital zircon ages were determined to be 1682, 1415, 1108, 169 and 90 Ma. Precambrian to Paleozoic zircons overlap in age with the Yavapai, Mazatzal, Granite-Rhyolite, and Grenville provinces (and age-equivalent ~1.0 Ga rocks), and recycled Neoproterozoic and Early Paleozoic detritus from Mesozoic eolianites of the southwest United States. Permian to Triassic age detritus overlap in age with granitoid rocks that outcrop in California and Arizona. Jurassic to Cretaceous age zircons overlap with the mid-Mesozoic Cordilleran magmatic arc and the Sierra Nevada batholith. Based on the provenance trends summarized above, a sediment dispersal model is favored where the Dakota Sandstone was derived largely from recycled Lower Cretaceous strata of the Bisbee Rift of southeastern Arizona and southwestern New Mexico (present-day Mogollon highlands). Overlying strata of the Tres Hermanos and Crevasse Canyon Formations were sourced primarily from Jurassic-Cretaceous parts of the Cordilleran arc with secondary contributions from recycled strata of the Bisbee Rift and possible the McCoy basin of southern Arizona and southwestern New Mexico.

U-Pb Detrital Zircon Geochronology, Sandstone Modal Composition, and Paleoflow Trends from Upper Cretaceous (Cenomanian-Campanian) Nonmarine Strata in Southern New Mexico

U-Pb Detrital Zircon Geochronology, Sandstone Modal Composition, and Paleoflow Trends from Upper Cretaceous (Cenomanian-Campanian) Nonmarine Strata in Southern New Mexico PDF Author: Cody John Stopka
Publisher:
ISBN:
Category :
Languages : en
Pages : 500

Get Book Here

Book Description
The Cordilleran foreland basin is located in the western part of North America and stretches from the Canadian Arctic to parts of southern Mexico and was active from the Late Jurassic to Late Cretaceous. Presented here are U-Pb detrital zircon ages, sandstone modal composition, and paleocurrent measurements from Upper Cretaceous (Cenomanian- Campanian) nonmarine strata of the Dakota Sandstone, Tres Hermanos Formation, and Crevasse Canyon Formation (Lower Member and Ash Canyon Member) located in the southernmost portions of the Sevier foreland basin in southern New Mexico. The Dakota Sandstone is dominated by monocrystalline quartz (84%) with volcanic and metamorphic lithic grains (15%). Paleoflow trends show east-directed (108°) to northeast-directed flow (50°). Detrital zircon age peaks occur at 1732, 1651, 1416, 1050, 626, 412, 230, and 103 Ma. The Tres Hermanos Formation is composed primarily of monocrystalline quartz (63%) with volcanic and metamorphic lithic grains (27%). Paleoflow trends predominantly reflect east-directed (93-109°) and southeast-directed (166°) flow. Peak detrital zircon ages occur at 1709, 1420, 1085, 169, and 94 Ma. The Lower Member of the Crevasse Canyon Formation is composed of monocrystalline quartz (50%) along with volcanic and metamorphic lithic grains (41%). Paleoflow trends show primarily east-directed flow (100°). Detrital zircon age peaks occur at 1702, 1420, 1067, 167, and 91 Ma. The Ash Canyon Member of the Crevasse Canyon Formation is composed of monocrystalline quartz (48%) with volcanic and metamorphic lithic grains (46%). Paleoflow trends show a east- to southeast-directed flow (108-118°). Peak detrital zircon ages were determined to be 1682, 1415, 1108, 169 and 90 Ma. Precambrian to Paleozoic zircons overlap in age with the Yavapai, Mazatzal, Granite-Rhyolite, and Grenville provinces (and age-equivalent ~1.0 Ga rocks), and recycled Neoproterozoic and Early Paleozoic detritus from Mesozoic eolianites of the southwest United States. Permian to Triassic age detritus overlap in age with granitoid rocks that outcrop in California and Arizona. Jurassic to Cretaceous age zircons overlap with the mid-Mesozoic Cordilleran magmatic arc and the Sierra Nevada batholith. Based on the provenance trends summarized above, a sediment dispersal model is favored where the Dakota Sandstone was derived largely from recycled Lower Cretaceous strata of the Bisbee Rift of southeastern Arizona and southwestern New Mexico (present-day Mogollon highlands). Overlying strata of the Tres Hermanos and Crevasse Canyon Formations were sourced primarily from Jurassic-Cretaceous parts of the Cordilleran arc with secondary contributions from recycled strata of the Bisbee Rift and possible the McCoy basin of southern Arizona and southwestern New Mexico.

U-Pb Detrital Zircon Geochronology of Lower Cretaceous Cedar Mountain and San Pitch Formations in Central-eastern, Utah

U-Pb Detrital Zircon Geochronology of Lower Cretaceous Cedar Mountain and San Pitch Formations in Central-eastern, Utah PDF Author: Gary J. Hunt
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 238

Get Book Here

Book Description
The distribution of U-Pb ages of detrital zircons from synorogenic Lower Cretaceous (Barremain-Albian) Cedar Mountain and San Pitch formation conglomerates and sandstones (N = 7, n = 641) preserved in the Sevier foreland basin of Utah are statistically related to age spectra of detrital zircons in Jurassic-Neoproterozoic strata (N = 11, n = 1104) in the Cordilleran fold-thrust belt. A history of Sevier thrust-belt unroofing, reworking, and recycling of detritus is recorded in the distribution of detrital zircons in Lower Cretaceous foreland basin strata. Three geochronological provenance intervals are observed in Neoproterozoic-Jurassic strata in the thrust-belt that are also recognized in 3 inverted chronofacies in foreland basin strata. The first provenance interval in the thrust belt is recognized as chronofacies A in the foreland basin. It is defined by a dominant group of Paleoproterozoic detrital zircons and the presence of significant numbers of Late Neoproterozic-Early Paleozoic (550 - 300 Ma) grains. Quartzites and sandstones in the thrust belt in provenance interval 1 include Pennsylvanian-Permain Oquirrh Formation, Permian Diamond Creek Sandstone, and the Jurassic Nugget Sandstone. Statistically related to provenance interval 1 are the oldest foreland basin strata in chronofacies A, including the Buckhorn Conglomerate Member of the Cedar Mountain Formation on the San Rafael Swell, and the Yellow Cat and Poison Strip Sandstone members in eastern Utah. The second provenance is observed in Ordovician-Devonian strata in the Canyon Range thrust sheet, and chronofacies B in the foreland basin; these display mostly Paleoproterozoic detrital zircons with dominant age groups of 1.8-1.9 Ga and 2.2-2.4 Ga. Cedar Mountain Formation conglomerates at the base of the Cretaceous succession in Salina Canyon on the southwestern Wasatch Plateau, and the Short Canyon Conglomerate (Upper Albain) on the western San Rafael Swell, are statistically related to detrital zircon age spectra observed in the Eureka (Ordovician) and Cove Fort (Devonian) quartzites in the thrust-belt. The third provenance interval observed constitutes Neoproterozoic and Cambrian quartzites from the Canyon Range thrust sheet and chronofacies C in the foreland basin, which all produce a tri-modal population of Mesoproterozoic (1.0-1.2 Ga), Paleoproterozoic (1.4 Ga and 1.6-1.8 Ga), and a subordinate population of Archean (>2.5 Ga) grains. Upper Albian conglomerates of the San Pitch Formation produced detrital zircon grains that were derived primarily from the oldest allochthonous strata in the thrust sheet, thus recording the complete unroofing of the thrust-belt in Early Cretaceous time. Abundant Mesozoic detrial zircon grains were sampled in distal Cedar Mountain Formation samples, whereas in more proximal deposits of the Buckhorn Conglomerate on the San Rafael Swell, Cordilleran arc grains are rare. This is due to different sediment dispersal patterns and involves recycling of detrital zircons from reworked Mesozoic strata and perhaps transported directly from Jurassic plutons in the southern Mogollon Highlands. The Buckgorn Conglomerate was deposited by braided transverse rivers with headwaters in the Sevier highlands that produce minimal Triassic-Jurassic detrital zircons, whereas distal deposits of the Yellow Cat and Poison Strip Sandstone members were deposited in a distal axial river system with headwaters in the Mogollon highlands where Triassic-Jurassic zircons are plentiful. Three stages of the early Cretaceous foreland basin in Utah are recognized. An initial stage, which was controlled predominantly by dynamic subsidence, is recognized by the slow deposition of Barremian-Aptian strata of the lower Cedar Mountain Formation (e.g. Buckhorn Conglomerate) with no evidence of a clastic wedge developement to the west. The second stage is the observance of the first westward thickening wedge of sediment recognized in Aptian-Albian Cedar Mountain Formation (Ruby Ranch Member); this indicates that the flexural component of the foreland basin began in Late Aptian or later.The final stage of Early Cretaceous thrust-belt unroofing is recognized with deposition of the San Pitch Formation on proximal axial rivers in an actively subsiding foredeep depozone during latest Albian time.

Provenance, Detrital Zircon U-PB Geochronology, and Tectonic Significance of Middle Cretaceous Sandstones from the Alberta Foreland Basin

Provenance, Detrital Zircon U-PB Geochronology, and Tectonic Significance of Middle Cretaceous Sandstones from the Alberta Foreland Basin PDF Author: Daniel Lee Buechmann
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Canadian-Alaskan Cordillera exhibits a severely overprinted amalgam of subduction zone, arc, back-arc, ocean basin, and continental margin assemblages that collectively represent more than 750 million years of tectonic activity. Sedimentary basins flanking the orogeny were filled with detritus from the adjacent uplifted fold-and-thrust belt and thus provide a detailed record of the source area that helps constrain the timing of paleogeographic reconstructions and tectonic evolution models. This study presents new U-Pb detrital zircon ages from Middle Cretaceous sandstones of the Alberta Foreland Basin that indicate a dramatic shift in provenance across the Albian-Cenomanian boundary and elucidate the extent of terrane emergence in the Cordillera between 101 and 96 Ma. The Albian Viking Formation yielded 221 U-Pb detrital zircon analyses with 206 grains (93%) providing Precambrian ages that are consistent with age spectra for Paleozoic and early Mesozoic miogeoclinal strata, indicating the foreland basin was being flooded by recycled passive margin detritus during the late Early Cretaceous. The Cenomanian Dunvegan Formation yielded 338 U-Pb detrital zircon analyses showing statistically significant Paleozoic age clusters at 358, 338, and 328 Ma that correspond with the Late Devonian to Early Mississippian Finlay and Late Mississipian Little Salmon magmatic cycles observed regionally throughout the large pericratonic Yukon-Tanana terrane. This correlation suggests the Yukon-Tanana terrane was entrained in the fold-and-thrust belt and exposed near the Dunvegan paleo-catchment area during the early Late Cretaceous, providing a minimum time constraint for the collision of the northern pericratonic terranes with western Laurentia.

Provenance of the South Texas Paleocene-Eocene Wilcox Group, Western Gulf of Mexico Basin

Provenance of the South Texas Paleocene-Eocene Wilcox Group, Western Gulf of Mexico Basin PDF Author: Glen Nelson Mackey
Publisher:
ISBN:
Category :
Languages : en
Pages : 310

Get Book Here

Book Description
Sandstone modal compositions and detrital zircon U-Pb analysis of the Paleocene-Eocene Wilcox Group of the southern Gulf Coast of Texas indicate long-distance sediment transport primarily from volcanic and basement sources to the west, northwest and southwest. The Wilcox Group of south Texas represents the earliest series of major post-Cretaceous pulses of sand deposition along the western margin of the Gulf of Mexico (GoM). Laramide basement uplifts have long been held to be the provenance of the Wilcox Group, implying that initiation of basement uplifts was the driving factor for this transition from carbonate sedimentation to clastic deposition. To determine the provenance of the Wilcox Group and test this conventional hypothesis, 40 thin sections were point-counted using the Gazzi-Dickinson method to determine sandstone composition and 10 detrital zircon samples were analyzed by LA-ICP-MS to determine U-Pb age spectra for each of the sampled areas. Modal data for sand grain populations suggest mixed sources including basement rocks, magmatic arc rocks and subordinate sedimentary rocks for the Wilcox Group. Zircon age spectra for these sandstones reveal a complex grain assemblage derived from older sediments and crystalline rocks ranging in age from Archean to Cenozoic. Sediment was primarily derived from Laramide uplifted crystalline blocks of the central and southern Rocky Mountains, the Cordilleran arc of western North America, and arc related extrusive and intrusive igneous rock of northern Mexico. Comparisons of Upper and Lower Wilcox zircon age spectra show that more arc related material was deposited in the Lower Wilcox, whereas more basement material was deposited in the Upper Wilcox.

Detrital Zircon U-Pb Geochronologic Data for Selected Cretaceous, Paleogene, Neogene, and Holocene Sandstones and River Sands in Southwest Montana and East-central Idaho

Detrital Zircon U-Pb Geochronologic Data for Selected Cretaceous, Paleogene, Neogene, and Holocene Sandstones and River Sands in Southwest Montana and East-central Idaho PDF Author: Paul Karl Link
Publisher:
ISBN:
Category : Geological time
Languages : en
Pages : 10

Get Book Here

Book Description


U-Pb Detrital Zircon Geochronology of the Late Paleocene Early Eocene Wilcox Group, East-Central Texas

U-Pb Detrital Zircon Geochronology of the Late Paleocene Early Eocene Wilcox Group, East-Central Texas PDF Author: Preston James Wahl
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sediment delivery to Texas and the northwestern Gulf of Mexico during the Early Paleogene represents an initial cycle of tectonic-influenced deposition that corresponds with the timing of late Laramide uplift. Sediments shed from Laramide uplifts to east-central Texas and the northwestern Gulf of Mexico during this time are preserved in strata of the Wilcox Group and lower Claiborne Group. U-Pb dating of detrital zircons from closely spaced stratigraphic units within these groups and the underlying Midway Group by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) reveals the relative arrival time of late Laramide-age detrital zircons to east-central Texas and distinct detrital zircon age assemblages. Comparison of zircon age assemblages from this study with data from potential source regions and additional Wilcox and Claiborne Group samples along the Texas and Louisiana Gulf Coastal Plain provides insight into paleodrainage during the Early Paleogene. The relative arrival time of late Laramide-age detrital zircons to east-central Texas corresponds with deposition of the Hooper Formation of the Wilcox Group, although the presence of these detrital zircons fluctuates within younger samples. Comparison of composite detrital zircon age spectra from sediment source regions and from locations along the Texas and Louisiana Gulf Coastal Plain shows that source regions contain unique distributions of ages, with age components that are similar to Gulf Coastal Plain data. Detrital zircon age data may support relatively similar sediment sources or a similar paleodrainage area for the majority of observed ages within the Midway Group, Wilcox Group, and Carrizo Formation in east-central Texas. Louisiana Wilcox Group and east-central Texas (Tehuacana Member through Carrizo Formation) data are similar and contrast with data of the south Texas Wilcox Group. This may support similar paleodrainage for Louisiana and east-central Texas and a different paleodrainage to the south Texas area. Data may also support the introduction of a new sediment source or a greater contribution of detrital zircons from an already existing source by the time of Queen City Formation (lower Claiborne Group) deposition in east-central Texas. Comparison of Louisiana Claiborne Group data with east-central Texas Queen City Formation data indicates that this source was also available during deposition of younger Claiborne Group strata in Louisiana. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155424

New Interpretations of the Stratigraphy and Sedimentology of Uppermost Jurassic to Lowermost Upper Cretaceous Strata in the San Juan Basin of Northwestern New Mexico

New Interpretations of the Stratigraphy and Sedimentology of Uppermost Jurassic to Lowermost Upper Cretaceous Strata in the San Juan Basin of Northwestern New Mexico PDF Author: William M. Aubrey
Publisher:
ISBN:
Category : Clay minerals
Languages : en
Pages : 52

Get Book Here

Book Description


Paleogeogra Detrital Zircon Geochronology of Upper Cambrian to Lower Mississippian Siliciclastic Strata of the Ozark Dome and Vicinity

Paleogeogra Detrital Zircon Geochronology of Upper Cambrian to Lower Mississippian Siliciclastic Strata of the Ozark Dome and Vicinity PDF Author: Bing Li
Publisher:
ISBN:
Category : Geological time
Languages : en
Pages : 69

Get Book Here

Book Description
"Siliciclastic strata exposed in the Ozark Dome provide Late Cambrian to Late Cretaceous snapshots of an evolving paleogeology and regional to far-field tectonic events. U-Pb ages of detrital zircons from the arkosic base of the Upper Cambrian Lamotte Formation reflect first cycle derivation from the adjacent ca. 1.31-1.48 Ga Granite-Rhyolite province, with subsidiary input from ca. 1.6-1.7 Ga Mazatzal basement. Feldspathic arenites near the top of the Lamotte Sandstone also contain significant quantities of detrital zircon grains of these ages, with additional peaks centered at ca. 2.7 and ca. 1.1 Ga, signaling the onset of extra-regional detrital input most likely ultimately derived from the Superior Province and the Midcontinent rift. Ordovician orthoquartzites of the Roubidoux, St. Peter, and Oil Creek formations feature ca. 2.7 and ca. 1.1 Ga peaks more prominently than the Lamotte Sandstone, suggesting an increasing proportion of northerly-derive. Detrital zircon age spectra from Devonian (Bushberg Sandstone), Mississippian (Aux Vases Sandstone) units show a smoothly decreasing proportion of ca. 2.7 Ga grains and an increasing amount of 1.0-1.3 Ga and 500-360 Ma grains with time, marking the arrival of detritus derived from the uplifting Appalachian basement. In aggregate, detrital rocks in the Ozark Dome reflect an evolving depositional environment involving two significant provenance shifts: 1) a Cambrian-Ordovician shift from local basement- to Superior Province- and MidContinent Rift-derived detritus, attributed to changes in base level associated with transgression and regression of the Sauk sea and 2) Devonian shift to detritus sourced from the emerging Appalachian Mountains to the east. Westward transport of clastic sediment originating from the Appalachian highlands continued sporadically until at least Early Mississippian time"--Abstract, page iii.

Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin

Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin PDF Author: U.S. Department of the Interior
Publisher: CreateSpace
ISBN: 9781496083180
Category : Reference
Languages : en
Pages : 40

Get Book Here

Book Description
Ages of detrital zircons are reported from ten samples of Lower Cretaceous to Paleogene metasandstones and sandstones from the Chugach Mountains, Talkeetna Mountains, and western Alaska Range of south-central Alaska. Zircon ages are also reported from three igneous clasts from two conglomerates. The results bear on the regional geology, stratigraphy, tectonics, and mineral resource potential of the southern Alaska convergent margin.

Detrital Zircon Geochronology and Sandstone Petrofacies of the Late Triassic – Early Jurassic Aldrich Mountains Group, Blue Mountains Province, Eastern Oregon

Detrital Zircon Geochronology and Sandstone Petrofacies of the Late Triassic – Early Jurassic Aldrich Mountains Group, Blue Mountains Province, Eastern Oregon PDF Author: John A. Russell
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 112

Get Book Here

Book Description