THE SURFACE STRUCTURE OF TURBULENT PREMIXED HYDROGEN/AIR RIM-STABILIZED FLAMES AT HIGH REYNOLDS NUMBER (PREMIXED TURBULENT FLAMES, FLAMES).

THE SURFACE STRUCTURE OF TURBULENT PREMIXED HYDROGEN/AIR RIM-STABILIZED FLAMES AT HIGH REYNOLDS NUMBER (PREMIXED TURBULENT FLAMES, FLAMES). PDF Author: MING-SHIN WU
Publisher:
ISBN:
Category :
Languages : en
Pages : 376

Get Book Here

Book Description
three-dimensional simulation, to remove 2-D deficiencies, appears to be computationally feasible for high Reynolds number conditions of interest for practical applications.

THE SURFACE STRUCTURE OF TURBULENT PREMIXED HYDROGEN/AIR RIM-STABILIZED FLAMES AT HIGH REYNOLDS NUMBER (PREMIXED TURBULENT FLAMES, FLAMES).

THE SURFACE STRUCTURE OF TURBULENT PREMIXED HYDROGEN/AIR RIM-STABILIZED FLAMES AT HIGH REYNOLDS NUMBER (PREMIXED TURBULENT FLAMES, FLAMES). PDF Author: MING-SHIN WU
Publisher:
ISBN:
Category :
Languages : en
Pages : 376

Get Book Here

Book Description
three-dimensional simulation, to remove 2-D deficiencies, appears to be computationally feasible for high Reynolds number conditions of interest for practical applications.

Turbulent Premixed Hydrogen/Air Flames

Turbulent Premixed Hydrogen/Air Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Get Book Here

Book Description
The properties of turbulent premixed flames were investigated both theoretically and experimentally. Attention was limited to hydrogen/air mixtures burning as either turbulent jet flames or a freely propagating flames in isotropic turbulence. The research has application to a variety to premixed turbulent combustion processes: underwater metal cutting at great depth, primary combustors for high-speed airbreathing propulsion systems, afterburners, fuel/ air explosions, and spark-ignition internal combustion engines. Major findings of this phase of the investigation are as follows: (1) effects of preferential diffusion are relevent for flames at high Reynolds number, retarding and enhancing the distortion of the flame surface by turbulence for stable and unstable conditions, respectively; (2) local turbulent burning velocity, flame brush thickness and the fractal dimension of the flame surface all increase with distance from the flameholder, with larger rates of increases at larger turbulence intensities; (3) estimates of flame properties using contemporary turbulence models were only fair because these methods cannot account for effects of preferential diffusion, distance from the flameholder and finite laminar flame speeds; and (4) the stochastic simulation duplicated measured trends of flame surface properties for neutral preferential diffusion conditions (the only case considered) but underestimated effects of turbulence (particularly near the flame tip) due to the limitations of a two-dimensional simulation.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Characterization of Turbulent Premixed Hydrogen-enriched Methane-air Flames Using Large Eddy Simulation

Characterization of Turbulent Premixed Hydrogen-enriched Methane-air Flames Using Large Eddy Simulation PDF Author: David Anthony Cicoria
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 198

Get Book Here

Book Description


Theoretical and Numerical Combustion

Theoretical and Numerical Combustion PDF Author: Thierry Poinsot
Publisher: R.T. Edwards, Inc.
ISBN: 9781930217102
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

30th International Symposium on Shock Waves 1

30th International Symposium on Shock Waves 1 PDF Author: Gabi Ben-Dor
Publisher: Springer
ISBN: 331946213X
Category : Technology & Engineering
Languages : en
Pages : 746

Get Book Here

Book Description
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Joint Stereo-PIV and NO-LIF in Turbulent Premixed Hydrogen-air Flames

Joint Stereo-PIV and NO-LIF in Turbulent Premixed Hydrogen-air Flames PDF Author: Christelle C. G. Magand
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A new technique to simultaneously and instantaneously resolve 3D velocity/2D strain rate fields and scalar/scalar gradient fields was developed and evaluated in this study. This technique combines Planar Laser Induced Fluorescence of the NO radical (NO-PLIF) and Stereoscopic Particle Image Velocimetry (SPIV). It was found that the NO-PLIF technique allowed the determination of various iso-c contours and as such would, in principle, allow the study of the influence of the heat release on various properties, provided a calibration of the NO-PLIF signal as a function of temperature is achieved. It was also shown that the NO-PLIF technique may not be unambiguous at detecting flame extinction. The SPIV technique allowed the determination of the velocities in 3D and of the strain rates in 2D from which the most extensive and the most compressive strain rates but not the intermediate strain rate could be extracted. Information on strain rates and progress variable gradients were of particular interest in this study as they were needed to study the turbulence-scalar interaction which appears explicitly in the transport equation for the scalar dissipation rate which was derived recently. Using the technique above mentioned, this work also aimed at gathering and analysing data such as flame normal orientation, progress variable gradients, velocity change across the flame front and strain rates along the flame contours in turbulent premixed hydrogen/air flames with added nitrogen. The flame normal orientation was found to be consistent with the regime of the flames studied. A new method was designed and presented to infer from the progress variable gradients the component of the flame normal in the third dimension. The velocity change across the flame front, inferred from the SPIV data, was found to be extremely small. It is thought that the (low) heat release of the flames studied contributed more to corrugation of the flame front than acceleration of the gases across the flame front. The strain rates were studied along apparently non-wrinkled and clearly wrinkled flame contours. Their variation could not successfully be linked to curvature solely. Their values were mostly below the value expected for extinction strain rates. Last, this study aimed at investigating the turbulence-scalar interactions in turbulent premixed hydrogen/air flames with added nitrogen via the characteristics of the alignment of the flame normal vectors with the principal strain rates. The results of this study are quite different from earlier experimental results obtained for turbulent premixed ethylene/air flames. The strong preferential alignment of the flame front normal with the most extensive strain rate observed for ethylene/air flames could not be observed for the hydrogen/air flames with added nitrogen studied in the present work. The key outcome of this study was that no preferential alignment could be observed for most of the flames. A slight preferential alignment of the flame front normal with the most compressive strain rate was observed for the flames with very low adiabatic flame temperature. The differences observed were attributed partly to Lewis number effects and partly to the low heat release superimposed on the hydrodynamic fields in the flames studied.

Joint Stereo-PIV and NO-LIF in Turbulent Premixed Hydrogen-air Flames

Joint Stereo-PIV and NO-LIF in Turbulent Premixed Hydrogen-air Flames PDF Author: Christelle C. G. Magand
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A new technique to simultaneously and instantaneously resolve 3D velocity/2D strain rate fields and scalar/scalar gradient fields was developed and evaluated in this study. This technique combines Planar Laser Induced Fluorescence of the NO radical (NO-PLIF) and Stereoscopic Particle Image Velocimetry (SPIV). It was found that the NO-PLIF technique allowed the determination of various iso-c contours and as such would, in principle, allow the study of the influence of the heat release on various properties, provided a calibration of the NO-PLIF signal as a function of temperature is achieved. It was also shown that the NO-PLIF technique may not be unambiguous at detecting flame extinction. The SPIV technique allowed the determination of the velocities in 3D and of the strain rates in 2D from which the most extensive and the most compressive strain rates but not the intermediate strain rate could be extracted. Information on strain rates and progress variable gradients were of particular interest in this study as they were needed to study the turbulence-scalar interaction which appears explicitly in the transport equation for the scalar dissipation rate which was derived recently. Using the technique above mentioned, this work also aimed at gathering and analysing data such as flame normal orientation, progress variable gradients, velocity change across the flame front and strain rates along the flame contours in turbulent premixed hydrogen/air flames with added nitrogen. The flame normal orientation was found to be consistent with the regime of the flames studied. A new method was designed and presented to infer from the progress variable gradients the component of the flame normal in the third dimension. The velocity change across the flame front, inferred from the SPIV data, was found to be extremely small. It is thought that the (low) heat release of the flames studied contributed more to corrugation of the flame front than acceleration of the gases across the flame front. The strain rates were studied along apparently non-wrinkled and clearly wrinkled flame contours. Their variation could not successfully be linked to curvature solely. Their values were mostly below the value expected for extinction strain rates. Last, this study aimed at investigating the turbulence-scalar interactions in turbulent premixed hydrogen/air flames with added nitrogen via the characteristics of the alignment of the flame normal vectors with the principal strain rates. The results of this study are quite different from earlier experimental results obtained for turbulent premixed ethylene/air flames. The strong preferential alignment of the flame front normal with the most extensive strain rate observed for ethylene/air flames could not be observed for the hydrogen/air flames with added nitrogen studied in the present work. The key outcome of this study was that no preferential alignment could be observed for most of the flames. A slight preferential alignment of the flame front normal with the most compressive strain rate was observed for the flames with very low adiabatic flame temperature. The differences observed were attributed partly to Lewis number effects and partly to the low heat release superimposed on the hydrodynamic fields in the flames studied.

A Gallery of Combustion and Fire

A Gallery of Combustion and Fire PDF Author: Charles E. Baukal, Jr.
Publisher: Cambridge University Press
ISBN: 1108660886
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
A Gallery of Combustion and Fire is the first book to provide a graphical perspective of the extremely visual phenomenon of combustion in full color. It is designed primarily to be used in parallel with, and supplement existing combustion textbooks that are usually in black and white, making it a challenge to visualize such a graphic phenomenon. Each image includes a description of how it was generated, which is detailed enough for the expert but simple enough for the novice. Processes range from small scale academic flames up to full scale industrial flames under a wide range of conditions such as low and normal gravity, atmospheric to high pressures, actual and simulated flames, and controlled and uncontrolled flames. Containing over 500 color images, with over 230 contributors from over 75 organizations, this volume is a valuable asset for experts and novices alike.