Turbulence, Coherent Structures, Dynamical Systems and Symmetry

Turbulence, Coherent Structures, Dynamical Systems and Symmetry PDF Author: Philip Holmes
Publisher:
ISBN: 9781139233668
Category : SCIENCE
Languages : en
Pages : 404

Get Book

Book Description
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Turbulence, Coherent Structures, Dynamical Systems and Symmetry

Turbulence, Coherent Structures, Dynamical Systems and Symmetry PDF Author: Philip Holmes
Publisher:
ISBN: 9781139233668
Category : SCIENCE
Languages : en
Pages : 404

Get Book

Book Description
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Turbulence, Coherent Structures, Dynamical Systems and Symmetry

Turbulence, Coherent Structures, Dynamical Systems and Symmetry PDF Author: Philip Holmes
Publisher: Cambridge University Press
ISBN: 1107008255
Category : Mathematics
Languages : en
Pages : 403

Get Book

Book Description
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Turbulence, Coherent Structures, Dynamical Systems, and Symmetry

Turbulence, Coherent Structures, Dynamical Systems, and Symmetry PDF Author: Philip Holmes
Publisher:
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 420

Get Book

Book Description


Lecture Notes on Turbulence and Coherent Structures in Fluids, Plasmas and Nonlinear Media

Lecture Notes on Turbulence and Coherent Structures in Fluids, Plasmas and Nonlinear Media PDF Author: Michael Shats
Publisher: World Scientific
ISBN: 9812774076
Category : Science
Languages : en
Pages : 397

Get Book

Book Description
This book is based on the lectures delivered at the 19th Canberra International Physics Summer School held at the Australian National University in Canberra (Australia) in January 2006.The problem of turbulence and coherent structures is of key importance in many fields of science and engineering. It is an area which is vigorously researched across a diverse range of disciplines such as theoretical physics, oceanography, atmospheric science, magnetically confined plasma, nonlinear optics, etc. Modern studies in turbulence and coherent structures are based on a variety of theoretical concepts, numerical simulation techniques and experimental methods, which cannot be reviewed effectively by a single expert.The main goal of these lecture notes is to introduce state-of-the-art turbulence research in a variety of approaches (theoretical, numerical simulations and experiments) and applications (fluids, plasmas, geophysics, nonlinear optical media) by several experts. A smooth introduction is presented to readers who are not familiar with the field, while reviewing the most recent advances in the area. This collection of lectures will provide a useful review for both postgraduate students and researchers new to the advancements in this field, as well as specialists seeking to expand their knowledge across different areas of turbulence research.

Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix, Numerical, and Optimization Methods in Science and Engineering PDF Author: Kevin W. Cassel
Publisher: Cambridge University Press
ISBN: 1108787622
Category : Technology & Engineering
Languages : en
Pages : 728

Get Book

Book Description
Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Turbulence, Coherent Structures, and Low Dimensional Models

Turbulence, Coherent Structures, and Low Dimensional Models PDF Author: Gal Berkooz
Publisher:
ISBN:
Category :
Languages : en
Pages : 478

Get Book

Book Description


Instabilities, Chaos and Turbulence

Instabilities, Chaos and Turbulence PDF Author: Paul Manneville
Publisher: World Scientific
ISBN: 1848163924
Category : Science
Languages : en
Pages : 456

Get Book

Book Description
This book (2nd edition) is a self-contained introduction to a wide body of knowledge on nonlinear dynamics and chaos. Manneville emphasises the understanding of basic concepts and the nontrivial character of nonlinear response, contrasting it with the intuitively simple linear response. He explains the theoretical framework using pedagogical examples from fluid dynamics, though prior knowledge of this field is not required. Heuristic arguments and worked examples replace most esoteric technicalities. Only basic understanding of mathematics and physics is required, at the level of what is currently known after one or two years of undergraduate training: elementary calculus, basic notions of linear algebra and ordinary differential calculus, and a few fundamental physical equations (specific complements are provided when necessary). Methods presented are of fully general use, which opens up ample windows on topics of contemporary interest. These include complex dynamical processes such as patterning, chaos control, mixing, and even the Earth's climate. Numerical simulations are proposed as a means to obtain deeper understanding of the intricacies induced by nonlinearities in our everyday environment, with hints on adapted modelling strategies and their implementation.

Dynamic Mode Decomposition

Dynamic Mode Decomposition PDF Author: J. Nathan Kutz
Publisher: SIAM
ISBN: 1611974496
Category : Science
Languages : en
Pages : 241

Get Book

Book Description
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Dimension Reduction of Large-Scale Systems

Dimension Reduction of Large-Scale Systems PDF Author: Peter Benner
Publisher: Springer Science & Business Media
ISBN: 3540279091
Category : Technology & Engineering
Languages : en
Pages : 397

Get Book

Book Description
In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.