Author: Dieter Happel
Publisher:
ISBN: 9781107368446
Category : Electronic books
Languages : en
Pages : 208
Book Description
This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras.
Triangulated Categories in the Representation Theory of Finite Dimensional Algebras
Author: Dieter Happel
Publisher:
ISBN: 9781107368446
Category : Electronic books
Languages : en
Pages : 208
Book Description
This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras.
Publisher:
ISBN: 9781107368446
Category : Electronic books
Languages : en
Pages : 208
Book Description
This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras.
Triangulated Categories in the Representation Theory of Finite Dimensional Algebras
Author: Dieter Happel
Publisher: Cambridge University Press
ISBN: 0521339227
Category : Categories (Mathematics).
Languages : en
Pages : 222
Book Description
An introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras.
Publisher: Cambridge University Press
ISBN: 0521339227
Category : Categories (Mathematics).
Languages : en
Pages : 222
Book Description
An introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras.
Triangulated Categories in the Representation of Finite Dimensional Algebras
Author: Dieter Happel
Publisher:
ISBN: 9781107046344
Category : Categories (Mathematics)
Languages : en
Pages : 207
Book Description
Publisher:
ISBN: 9781107046344
Category : Categories (Mathematics)
Languages : en
Pages : 207
Book Description
Handbook of Tilting Theory
Author: Lidia Angeleri Hügel
Publisher: Cambridge University Press
ISBN: 9780521680455
Category : Mathematics
Languages : en
Pages : 482
Book Description
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Publisher: Cambridge University Press
ISBN: 9780521680455
Category : Mathematics
Languages : en
Pages : 482
Book Description
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry
Author: Vlastimil Dlab
Publisher: American Mathematical Soc.
ISBN: 9780821871454
Category : Mathematics
Languages : en
Pages : 508
Book Description
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821871454
Category : Mathematics
Languages : en
Pages : 508
Book Description
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.
Representations of Finite-Dimensional Algebras
Author: Peter Gabriel
Publisher: Springer Science & Business Media
ISBN: 9783540629900
Category : Mathematics
Languages : en
Pages : 188
Book Description
From the reviews: "... [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette
Publisher: Springer Science & Business Media
ISBN: 9783540629900
Category : Mathematics
Languages : en
Pages : 188
Book Description
From the reviews: "... [Gabriel and Roiter] are pioneers in this subject and they have included proofs for statements which in their opinions are elementary, those which will help further understanding and those which are scarcely available elsewhere. They attempt to take us up to the point where we can find our way in the original literature. ..." --The Mathematical Gazette
Triangulated Categories
Author: Thorsten Holm
Publisher: Cambridge University Press
ISBN: 1139488880
Category : Mathematics
Languages : en
Pages : 473
Book Description
A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.
Publisher: Cambridge University Press
ISBN: 1139488880
Category : Mathematics
Languages : en
Pages : 473
Book Description
A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.
Representation Theory
Author: Alexander Zimmermann
Publisher: Springer
ISBN: 3319079689
Category : Mathematics
Languages : en
Pages : 720
Book Description
Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.
Publisher: Springer
ISBN: 3319079689
Category : Mathematics
Languages : en
Pages : 720
Book Description
Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.
Triangulated Categories in Representation Theory and Beyond
Author: Petter Andreas Bergh
Publisher: Springer Nature
ISBN: 3031577892
Category :
Languages : en
Pages : 275
Book Description
Publisher: Springer Nature
ISBN: 3031577892
Category :
Languages : en
Pages : 275
Book Description
Homological Theory of Representations
Author: Henning Krause
Publisher: Cambridge University Press
ISBN: 1108985815
Category : Mathematics
Languages : en
Pages : 518
Book Description
Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
Publisher: Cambridge University Press
ISBN: 1108985815
Category : Mathematics
Languages : en
Pages : 518
Book Description
Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.