Trends in Transportation Modeling

Trends in Transportation Modeling PDF Author: Tejal A. Patel
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Get Book Here

Book Description

Trends in Transportation Modeling

Trends in Transportation Modeling PDF Author: Tejal A. Patel
Publisher:
ISBN:
Category :
Languages : en
Pages : 518

Get Book Here

Book Description


Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand

Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand PDF Author: Feras El Zarwi
Publisher:
ISBN:
Category :
Languages : en
Pages : 119

Get Book Here

Book Description
The transportation system is undergoing major technological and infrastructural changes, such as the introduction of autonomous vehicles, high speed rail, carsharing, ridesharing, flying cars, drones, and other app-driven on-demand services. While the changes are imminent, the impact on travel behavior is uncertain, as is the role of policy in shaping the future. Literature shows that even under the most optimistic scenarios, society's environmental goals cannot be met by technology, operations, and energy system improvements only - behavior change is needed. Behavior change does not occur instantaneously, but is rather a gradual process that requires years and even generations to yield the desired outcomes. That is why we need to nudge and guide trends of travel behavior over time in this era of transformative mobility. We should focus on influencing long-range trends of travel behavior to be more sustainable and multimodal via effective policies and investment strategies. Hence, there is a need for developing policy analysis tools that focus on modeling the evolution of trends of travel behavior in response to upcoming transportation services and technologies. Over time, travel choices, attitudes, and social norms will result in changes in lifestyles and travel behavior. That is why understanding dynamic changes of lifestyles and behavior in this era of transformative mobility is central to modeling and influencing trends of travel behavior. Modeling behavioral dynamics and trends is key to assessing how policies and investment strategies can transform cities to provide a higher level of connectivity, attain significant reductions in congestion levels, encourage multimodality, improve economic and environmental health, and ensure equity. This dissertation focuses on addressing limitations of activity-based travel demand models in capturing and predicting trends of travel behavior. Activity-based travel demand models are the commonly-used approach by metropolitan planning agencies to predict 20-30 year forecasts. These include traffic volumes, transit ridership, biking and walking market shares that are the result of large scale transportation investments and policy decisions. Currently, travel demand models are not equipped with a framework that predicts long-range trends in travel behavior for two main reasons. First, they do not entail a mechanism that projects membership and market share of new modes of transport into the future (Uber, autonomous vehicles, carsharing services, etc). Second, they lack a dynamic framework that could enable them to model and forecast changes in lifestyles and transport modality styles. Modeling the evolution and dynamic changes of behavior, modality styles and lifestyles in response to infrastructural and technological investments is key to understanding and predicting trends of travel behavior, car ownership levels, vehicle miles traveled (VMT), and travel mode choice. Hence, we need to integrate a methodological framework into current travel demand models to better understand and predict the impact of upcoming transportation services and technologies, which will be prevalent in 20-30 years. The objectives of this dissertation are to model the dynamics of lifestyles and travel behavior through: " Developing a disaggregate, dynamic discrete choice framework that models and predicts long-range trends of travel behavior, and accounts for upcoming technological and infrastructural changes." Testing the proposed framework to assess its methodological flexibility and robustness." Empirically highlighting the value of the framework to transportation policy and practice. The proposed disaggregate, dynamic discrete choice framework in this dissertation addresses two key limitations of existing travel demand models, and in particular: (1) dynamic, disaggregate models of technology and service adoption, and (2) models that capture how lifestyles, preferences and transport modality styles evolve dynamically over time. This dissertation brings together theories and techniques from econometrics (discrete choice analysis), machine learning (hidden Markov models), statistical learning (Expectation Maximization algorithm), and the technology diffusion literature (adoption styles). Throughout this dissertation we develop, estimate, apply and test the building blocks of the proposed disaggregate, dynamic discrete choice framework. The two key developed components of the framework are defined below. First, a discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services. A disaggregate technology adoption model was developed since models of this type can: (1) be integrated with current activity-based travel demand models; and (2) account for the spatial/network effect of the new technology to understand and quantify how the size of the network, governed by the new technology, influences the adoption behavior. We build on the formulation of discrete mixture models and specifically dynamic latent class choice models, which were integrated with a network effect model. We employed a confirmatory approach to estimate our latent class choice model based on findings from the technology diffusion literature that focus on defining distinct types of adopters such as innovator/early adopters and imitators. Latent class choice models allow for heterogeneity in the utility of adoption for the various market segments i.e. innovators/early adopters, imitators and non-adopters. We make use of revealed preference (RP) time series data from a one-way carsharing system in a major city in the United States to estimate model parameters. The data entails a complete set of member enrollment for the carsharing service for a time period of 2.5 years after being launched. Consistent with the technology diffusion literature, our model identifies three latent classes whose utility of adoption have a well-defined set of preferences that are statistically significant and behaviorally consistent. The technology adoption model predicts the probability that a certain individual will adopt the service at a certain time period, and is explained by social influences, network effect, socio-demographics and level-of-service attributes. Finally, the model was calibrated and then used to forecast adoption of the carsharing system for potential investment strategy scenarios. A couple of takeaways from the adoption forecasts were: (1) highest expected increase in the monthly number of adopters arises by establishing a relationship with a major technology firm and placing a new station/pod for the carsharing system outside that technology firm; and (2) no significant difference in the expected number of monthly adopters for the downtown region will exist between having a station or on-street parking. The second component in the proposed framework entails modeling and forecasting the evolution of preferences, lifestyles and transport modality styles over time. Literature suggests that preferences, as denoted by taste parameters and consideration sets in the context of utility-maximizing behavior, may evolve over time in response to changes in demographic and situational variables, psychological, sociological and biological constructs, and available alternatives and their attributes. However, existing representations typically overlook the influence of past experiences on present preferences. This study develops, applies and tests a hidden Markov model with a discrete choice kernel to model and forecast the evolution of individual preferences and behaviors over long-range forecasting horizons. The hidden states denote different preferences, i.e. modes considered in the choice set and sensitivity to level-of-service attributes. The evolutionary path of those hidden states (preference states) is hypothesized to be a first-order Markov process such that an individual's preferences during a particular time period are dependent on their preferences during the previous time period. The framework is applied to study the evolution of travel mode preferences, or modality styles, over time, in response to a major change in the public transportation system. We use longitudinal travel diary from Santiago, Chile. The dataset consists of four one-week pseudo travel diaries collected before and after the introduction of Transantiago, which was a complete redesign of the public transportation system in the city. Our model identifies four modality styles in the population, labeled as follows: drivers, bus users, bus-metro users, and auto-metro users. The modality styles differ in terms of the travel modes that they consider and their sensitivity to level-of-service attributes (travel time, travel cost, etc.). At the population level, there are significant shifts in the distribution of individuals across modality styles before and after the change in the system, but the distribution is relatively stable in the periods after the change. In general, the proportion of drivers, auto-metro users, and bus-metro users has increased, and the proportion of bus users has decreased. At the individual level, habit formation is found to impact transition probabilities across all modality styles; individuals are more likely to stay in the same modality style over successive time periods than transition to a different modality style. Finally, a comparison between the proposed dynamic framework and comparable static frameworks reveals differences in aggregate forecasts for different policy scenarios, demonstrating the value of the proposed framework for both individual and population-level policy analysis. The aforementioned methodological frameworks comprise complex model formulation. This however comes at a cost in terms.

Mobility Patterns, Big Data and Transport Analytics

Mobility Patterns, Big Data and Transport Analytics PDF Author: Constantinos Antoniou
Publisher: Elsevier
ISBN: 0128129719
Category : Social Science
Languages : en
Pages : 452

Get Book Here

Book Description
Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility ‘structural’ analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data’s impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility ‘structural’ analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data’s impact on mobility, and an introduction to the tools necessary to apply new techniques. Guides readers through the paradigm-shifting opportunities and challenges of handling Big Data in transportation modeling and analytics Covers current analytical innovations focused on capturing, predicting, visualizing, and controlling mobility patterns, while discussing future trends Delivers an introduction to transportation-related information advances, providing a benchmark reference by world-leading experts in the field Captures and manages mobility patterns, covering multiple purposes and alternative transport modes, in a multi-disciplinary approach Companion website features videos showing the analyses performed, as well as test codes and data-sets, allowing readers to recreate the presented analyses and apply the highlighted techniques to their own data

Urban Transportation Modeling and Planning

Urban Transportation Modeling and Planning PDF Author: Peter R. Stopher
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 380

Get Book Here

Book Description


Schedule-Based Modeling of Transportation Networks

Schedule-Based Modeling of Transportation Networks PDF Author: Nigel H. M. Wilson
Publisher: Springer Science & Business Media
ISBN: 0387848126
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
"Schedule-Based Modeling of Transportation Networks: Theory and Applications" follows the book Schedule-Based Dynamic Transit Modeling, published in this series in 2004, recognizing the critical role that schedules play in transportation systems. Conceived for the simulation of transit systems, in the last few years the schedule-based approach has been expanded and applied to operational planning of other transportation schedule services besides mass transit, e.g. freight transport. This innovative approach allows forecasting the evolution over time of the on-board loads on the services and their time-varying performance, using credible user behavioral hypotheses. It opens new frontiers in transportation modeling to support network design, timetable setting, and investigation of congestion effects, as well as the assessment of such new technologies, such as users system information (ITS technologies).

National Transport Models

National Transport Models PDF Author: Lars Lundqvist
Publisher: Springer Science & Business Media
ISBN: 9783540424260
Category : Business & Economics
Languages : en
Pages : 220

Get Book Here

Book Description
National and European transport models have become increasingly important. This volume presents the state of the art and prospects of a sample of the most advanced national and European transport models within a comparative framework.

Trends of Transportation Simulation and Modeling Based on a Selection of Exploratory Advanced Research Projects [electronic Resource]

Trends of Transportation Simulation and Modeling Based on a Selection of Exploratory Advanced Research Projects [electronic Resource] PDF Author: Turner-Fairbank Highway Research Center
Publisher:
ISBN:
Category : Transportation
Languages : en
Pages : 30

Get Book Here

Book Description
This report summarizes an Exploratory Advanced Research Program workshop held at the Turner-Fairbank Highway Research Center in August 2011 as part of an ongoing effort to examine advancement in simulation and modeling and the applications in transportation research and practice.

Modelling Intelligent Multi-Modal Transit Systems

Modelling Intelligent Multi-Modal Transit Systems PDF Author: Agostino Nuzzolo
Publisher: CRC Press
ISBN: 1315351986
Category : Computers
Languages : en
Pages : 229

Get Book Here

Book Description
The growing mobility needs of travellers have led to the development of increasingly complex and integrated multi-modal transit networks. Hence, transport agencies and transit operators are now more urgently required to assist in the challenging task of effectively and efficiently planning, managing, and governing transit networks. A pre-condition for the development of an effective intelligent multi-modal transit system is the integration of information and communication technology (ICT) tools that will support the needs of transit operators and travellers. To achieve this, reliable real-time simulation and short-term forecasting of passenger demand and service network conditions are required to provide both real-time traveller information and successfully synchronise transit service planning and operations control. Modelling Intelligent Multi-Modal Transit Systems introduces the current trends in this newly emerging area. Recent developments in information technology and telematics have enabled a large amount of data to become available, thus further attracting transport researchers to set up new models outside the context of the traditional data-driven approach. The alternative demand-supply interaction or network assignment modelling approach has improved greatly in recent years and has a crucial role to play in this new context.

Transport Policy, Management & Technology Towards 2001: Contemporary developments in transport modeling

Transport Policy, Management & Technology Towards 2001: Contemporary developments in transport modeling PDF Author:
Publisher:
ISBN:
Category : Transportation
Languages : en
Pages : 664

Get Book Here

Book Description


Handbook of Transport Modelling

Handbook of Transport Modelling PDF Author: David A. Hensher
Publisher: Elsevier Science Limited
ISBN:
Category : Business & Economics
Languages : en
Pages : 826

Get Book Here

Book Description
Since 2000, there has been an exponential amount of research completed in the field of transport modelling thereby creating a need for an expanded and revised edition of this book. National transport models have taken on the new modelling methods and there have been theoretical and empirical advances in performance measurement. Coverage will include current demand methods, data issues, valuation, cost and performance, and updated traffic models. Supplementary case studies will illustrate how modelling can be applied to the study of the different transport modes and the infrastructures that support them.The second edition of this handbook will continue to be an essential reference for researchers and practitioners in the field. All contributions are by leading experts in their fields and there is extensive cross-referencing of subject matter. This book features expanded coverage on emerging trends and updated case studies. It addresses models for specific applications (i.e. parking, national traffic forecasting, public transport, urban freight movements, and logistics management).