Transportation Energy Futures Series

Transportation Energy Futures Series PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Get Book Here

Book Description
The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050. These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

Transportation Energy Futures Series

Transportation Energy Futures Series PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Get Book Here

Book Description
The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050. These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

Fuel, Alternative Fuel Infrastructure Expansion

Fuel, Alternative Fuel Infrastructure Expansion PDF Author: National Renewable Energy Laboratory (U.S.)
Publisher:
ISBN:
Category : Alternative fuel vehicles
Languages : en
Pages : 101

Get Book Here

Book Description
Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Transportation Energy Futures Series

Transportation Energy Futures Series PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Get Book Here

Book Description
Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Advances in Low Carbon Technologies and Transition

Advances in Low Carbon Technologies and Transition PDF Author: Shigemi Kagawa
Publisher: MDPI
ISBN: 3039435574
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
A wide variety of technologies and products have already become widespread in our society. However, policies have not been well-implemented to effectively reduce energy consumptions and CO2 emissions by promoting low-carbon technologies and products. This Special Issue focuses on studies targeting specific products (e.g., motor vehicle, household dishwashers, etc.) and/or technologies (e.g., information and communication technology, transport technology, CO2 capture technology, etc.) and quantifying resource and energy consumptions and CO2 emissions associated with products and technology systems using the reliable inventory database. Thus, this Special Issue provides important studies on how demand- and supply-side policies can contribute to reducing energy consumptions and CO2 emissions from consumption- and production-based perspectives.

Brick by Brick Building Better Housing Policies

Brick by Brick Building Better Housing Policies PDF Author: OECD
Publisher: OECD Publishing
ISBN: 9264739874
Category :
Languages : en
Pages : 174

Get Book Here

Book Description
The report brings together evidence, international experience and policy insights for the design of housing policies. Emphasis is placed on three broad aspects: inclusiveness, efficiency and sustainability. Inclusive access to housing has become increasingly challenging in many OECD countries due to a large extent to rising housing costs, which reflects the failure of housing supply to meet demand, particularly in jobs-rich urban areas.

Alternative Fuels for Transportation

Alternative Fuels for Transportation PDF Author: A S Ramadhas
Publisher: CRC Press
ISBN: 1000218880
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description
Exploring how to counteract the world's energy insecurity and environmental pollution, this volume covers the production methods, properties, storage, engine tests, system modification, transportation and distribution, economics, safety aspects, applications, and material compatibility of alternative fuels. The esteemed editor highlights the importance of moving toward alternative fuels and the problems and environmental impact of depending on petroleum products. Each self-contained chapter focuses on a particular fuel source, including vegetable oils, biodiesel, methanol, ethanol, dimethyl ether, liquefied petroleum gas, natural gas, hydrogen, electric, fuel cells, and fuel from nonfood crops.

Transportation Energy Futures

Transportation Energy Futures PDF Author: Stewart Fischer
Publisher:
ISBN: 9781628085839
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages :

Get Book Here

Book Description


Transitions to Alternative Transportation Technologies

Transitions to Alternative Transportation Technologies PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309134366
Category : Science
Languages : en
Pages : 141

Get Book Here

Book Description
Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.

Liquid Transportation Fuels from Coal and Biomass

Liquid Transportation Fuels from Coal and Biomass PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309137128
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
The transportation sector cannot continue on its current path: The volatility of oil prices threatens the U.S. economy, the large proportion of oil importation threatens U.S. energy security, and the massive contribution of greenhouse gases threatens the environment. The development of domestic sources of alternative transportation fuels with lower greenhouse emissions is now a national imperative. Coal and biomass are in abundant supply in the United States and can be converted to liquid fuels that can be combusted in existing and future vehicles. Their abundant supply makes them attractive candidates to provide non-oil-based liquid fuels to the U.S. transportation system. However, there are important questions about the economic viability, carbon impact, and technology status of these options. Liquid Transportation Fuels from Coal and Biomass provides a snapshot of the potential costs of liquid fuels from biomass by biochemical conversion and from biomass and coal by thermochemical conversion. Policy makers, investors, leaders in industry, the transportation sector, and others with a concern for the environment, economy, and energy security will look to this book as a roadmap to independence from foreign oil. With immediate action and sustained effort, alternative liquid fuels can be available in the 2020 time frame, if or when the nation needs them.

Renewable Transportation Fuel for California's Electric-drive Vehicles

Renewable Transportation Fuel for California's Electric-drive Vehicles PDF Author: Alexander Allan
Publisher:
ISBN: 9781124664477
Category :
Languages : en
Pages :

Get Book Here

Book Description
California has enacted a number of policies that incentivize the use of advanced vehicle technologies and fuels to help reduce petroleum usage, air pollution and greenhouse gas emissions. These include the Pavley greenhouse gas emissions standards, the Low Carbon Fuel Standard (LCFS), the Zero Emission Vehicle (ZEV) and Low-Emission Vehicle (LEV) regulations and initiatives that support adoption of alternative fuels, such as the Air Quality Improvement Program (AQIP) and Alternative Fuel Incentive Program (AFIP). In addition, the state has set an economy-wide goal of reducing greenhouse gas (GHG) emissions 80% below 1990 levels by 2050. Greatly reducing GHG emissions from the transportation sector will likely require large-scale adoption of electric-drive - plug-in hybrid electric, battery-electric, or hydrogen fuel cell vehicles - powered by renewable, low carbon electricity or hydrogen. Under the Renewable Portfolio Standard (RPS) the contribution of renewable sources to California's electricity generation mix will increase from 20 percent in 2010 to 33 percent in 2020. Likewise, SB1505 requires hydrogen transportation fuel in California to achieve a 30% reduction in GHG emissions per mile and include a 33% renewable component. The mutual policy goals of decarbonized transportation fuels and electricity generation will lead to a "convergence" of these two previously disparate energy sectors. Any effort to assess California's ability to achieve deep GHG emissions cuts from transportation will therefore require an integrated approach that considers such a convergence, understanding how best to share energy supply resources among both sectors and meet the combined demand for low-carbon, renewable energy they represent. In previous studies, Ryan McCarthy developed an hourly model of California's future electricity grid (LEDGE-CA) to investigate GHG emissions and cost impacts attributable to interactions between growing populations of electric-drive vehicles and the evolution of the electricity supply in California. This thesis aims to extend McCarthy's work in two key areas: quantifying renewable resources available for electricity and hydrogen fuel production in California and investigating the potential role of energy storage. Using geospatial and temporal analysis of planned and potential renewable electricity generation projects, this study develops a detailed assessment of the hourly renewable electricity supply in California that serves as an input into LEDGE-CA. Wind and solar energy are abundant renewable resources in California, yet their intermittency make them challenging to integrate into the electricity grid. Grid-energy storage options are evaluated to investigate how best to utilize wind and solar energy resources to meet electricity and hydrogen fuel demand. This study assesses the total potential for using renewable resources to produce fuel for electric and hydrogen vehicles in California and identifies potential strategy differences in terms of where and when to produce electricity and hydrogen fuels. Alternative pathways are compared with respect to cost, GHG emissions, energy demand, and transition issues.