Transport Theories for Strongly-Interacting Systems

Transport Theories for Strongly-Interacting Systems PDF Author: Wolfgang Cassing
Publisher: Springer Nature
ISBN: 3030802957
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book provides an overview on transport theories, focusing on applications and the relativistic off-shell transport theory which are of particular interest for physicists working in the field of relativistic strong-interaction physics, e.g. relativistic or ultra-relativistic heavy-ion collisions or the evolution of the early universe. In this regard, a thorough derivation of the transport equations and a careful analysis of the approximations employed is given. The text is enriched with a multitude of Appendices that partly recall elements of quantum mechanics and field theory or present examples for specific models. Specific exercises are given throughout the chapters. As a basic knowledge the reader should be familiar with quantum mechanics and its principles as well as some basic concepts of the quantum many-body physics and field theory. All chapters close with a short summary and numerical calculations are provided to master and illustrate the subject.

Transport Theories for Strongly-Interacting Systems

Transport Theories for Strongly-Interacting Systems PDF Author: Wolfgang Cassing
Publisher: Springer Nature
ISBN: 3030802957
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book provides an overview on transport theories, focusing on applications and the relativistic off-shell transport theory which are of particular interest for physicists working in the field of relativistic strong-interaction physics, e.g. relativistic or ultra-relativistic heavy-ion collisions or the evolution of the early universe. In this regard, a thorough derivation of the transport equations and a careful analysis of the approximations employed is given. The text is enriched with a multitude of Appendices that partly recall elements of quantum mechanics and field theory or present examples for specific models. Specific exercises are given throughout the chapters. As a basic knowledge the reader should be familiar with quantum mechanics and its principles as well as some basic concepts of the quantum many-body physics and field theory. All chapters close with a short summary and numerical calculations are provided to master and illustrate the subject.

Transport Theories for Strongly-Interacting Systems

Transport Theories for Strongly-Interacting Systems PDF Author: Wolfgang Cassing
Publisher:
ISBN: 9783030802967
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides an overview on transport theories, focusing on applications and the relativistic off-shell transport theory which are of particular interest for physicists working in the field of relativistic strong-interaction physics, e.g. relativistic or ultra-relativistic heavy-ion collisions or the evolution of the early universe. In this regard, a thorough derivation of the transport equations and a careful analysis of the approximations employed is given. The text is enriched with a multitude of Appendices that partly recall elements of quantum mechanics and field theory or present examples for specific models. Specific exercises are given throughout the chapters. As a basic knowledge the reader should be familiar with quantum mechanics and its principles as well as some basic concepts of the quantum many-body physics and field theory. All chapters close with a short summary and numerical calculations are provided to master and illustrate the subject.

Electronic Transport Theories

Electronic Transport Theories PDF Author: Navinder Singh
Publisher: CRC Press
ISBN: 131535196X
Category : Science
Languages : en
Pages : 110

Get Book Here

Book Description
Maintaining a practical perspective, Electronic Transport Theories: From Weakly to Strongly Correlated Materials provides an integrative overview and comprehensive coverage of electronic transport with pedagogy in view. It covers traditional theories, such as the Boltzmann transport equation and the Kubo formula, along with recent theories of transport in strongly correlated materials. The understood case of electronic transport in metals is treated first, and then transport issues in strange metals are reviewed. Topics discussed are: the Drude-Lorentz theory; the traditional Bloch-Boltzmann theory and the Grüneisen formula; the Nyquist theorem and its formulation by Callen and Welton; the Kubo formalism; the Langevin equation approach; the Wölfle-Götze memory function formalism; the Kohn-Luttinger theory of transport; and some recent theories dealing with strange metals. This book is an invaluable resource for undergraduate students, post-graduate students, and researchers with a background in quantum mechanics, statistical mechanics, and mathematical methods.

Modern Theories of Many-Particle Systems in Condensed Matter Physics

Modern Theories of Many-Particle Systems in Condensed Matter Physics PDF Author: Daniel C. Cabra
Publisher: Springer Science & Business Media
ISBN: 3642104487
Category : Technology & Engineering
Languages : en
Pages : 380

Get Book Here

Book Description
Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.

Strongly Interacting Quantum Systems out of Equilibrium

Strongly Interacting Quantum Systems out of Equilibrium PDF Author: Thierry Giamarchi
Publisher: Oxford University Press
ISBN: 0191080543
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.

Strongly Correlated Systems

Strongly Correlated Systems PDF Author: Adolfo Avella
Publisher: Springer Science & Business Media
ISBN: 3642351069
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.

Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 612

Get Book Here

Book Description


Strong Interactions in Low Dimensions

Strong Interactions in Low Dimensions PDF Author: D. Baeriswyl
Publisher: Springer Science & Business Media
ISBN: 1402034636
Category : Science
Languages : en
Pages : 441

Get Book Here

Book Description
This book provides an attempt to convey the colorful facets of condensed matter systems with reduced dimensionality. Some of the specific features predicted for interacting one-dimensional electron systems, such as charge- and spin-density waves, have been observed in many quasi-one-dimensional materials. The two-dimensional world is even richer: besides d-wave superconductivity and the Quantum Hall Effect - perhaps the most spectacular phases explored during the last two decades - many collective charge and spin states have captured the interest of researchers, such as charge stripes or spontaneously generated circulating currents. Recent years have witnessed important progress in material preparation, measurement techniques and theoretical methods. Today larger and better samples, higher flux for neutron beams, advanced light sources, better resolution in electron spectroscopy, new computational algorithms, and the development of field-theoretical approaches allow an in-depth analysis of the complex many-body behaviour of low-dimensional materials. The epoch when simple mean-field arguments were sufficient for describing the gross features observed experimentally is definitely over. The Editors' aim is to thoroughly explain a number of selected topics: the application of dynamical probes, such as neutron scattering, optical absorption and photoemission, as well as transport studies, both electrical and thermal. Some of the more theoretical chapters are directly relevant for experiments, such as optical spectroscopy, transport in one-dimensional models, and the phenomenology of charge inhomogeneities in layered materials, while others discuss more general topics and methods, for example the concept of a Luttinger liquid and bosonization, or duality transformations, both promising tools for treating strongly interacting many-body systems.

Two-Dimensional Coulomb Liquids and Solids

Two-Dimensional Coulomb Liquids and Solids PDF Author: Yuriy Monarkha
Publisher: Springer Science & Business Media
ISBN: 3662106396
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This coherent monograph describes and explains quantum phenomena in two-dimensional (2D) electron systems with extremely strong internal interactions, which cannot be described by the conventional Fermi-liquid approach. The central physical objects considered are the 2D Coulomb liquid, of which the average Coulomb interaction energy per electron is much higher than the mean kinetic energy, and the Wigner solid. The text provides a new and comprehensive review of the remarkable properties of Coulomb liquids and solids formed on the free surface of liquid helium and other interfaces. This book is intended for graduate students and researchers in the fields of quantum liquids, electronic properties of 2D systems, and solid-state physics. It includes different levels of sophistication so as to be useful for both theorists and experimentalists. The presentation is largely self-contained, and also describes some instructive examples that will be of general interest to solid-state physicists.

Density Functional Theory

Density Functional Theory PDF Author: Eric Cancès
Publisher: Springer Nature
ISBN: 3031223403
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
Density functional theory (DFT) provides the most widely used models for simulating molecules and materials based on the fundamental laws of quantum mechanics. It plays a central role in a huge spectrum of applications in chemistry, physics, and materials science.Quantum mechanics describes a system of N interacting particles in the physical 3-dimensional space by a partial differential equation in 3N spatial variables. The standard numerical methods thus incur an exponential increase of computational effort with N, a phenomenon known as the curse of dimensionality; in practice these methods already fail beyond N=2. DFT overcomes this problem by 1) reformulating the N-body problem involving functions of 3N variables in terms of the density, a function of 3 variables, 2) approximating it by a pioneering hybrid approach which keeps important ab initio contributions and re-models the remainder in a data-driven way. This book intends to be an accessible, yet state-of-art text on DFT for graduate students and researchers in applied and computational mathematics, physics, chemistry, and materials science. It introduces and reviews the main models of DFT, covering their derivation and mathematical properties, numerical treatment, and applications.