Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation

Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation PDF Author: Joshua Samuel Bowman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In the operation of a nuclear reactor, the performance of the fuel cladding is critical to ensuring safe and reliable operation of the reactor. The current generation of Light Water Reactors utilizes claddings made from zirconium alloys. The material used for nuclear reactors must be able to withstand temperatures above 3000C while also being exposed to water, high pressures, and radiation. During operation, the zirconium cladding corrodes and picks up hydrogen which can adversely affect its performance. The corrosion mechanisms at work have yet to be fully characterized, especially the influence of irradiation. In order to better understand the mechanisms at work and characterize the behavior of zirconium alloys under reactor conditions, the Mechanistic Understanding of Zirconium Alloy Corrosion (MUZIC) consortium focused on the autoclave corrosion (MUZIC-1) and hydrogen pickup (MUZIC-2) outside of irradiation. The MUZIC-3 effort focuses on corrosion under irradiation. While it would be optimal to test reactor-irradiated samples, the difficulties posed by irradiating, corrosion testing, and examining these samples makes ion irradiation a more appealing manner of irradiation. Using doses and temperatures adjusted for substitution of protons for neutron radiation, this experiment seeks to characterize the effects of irradiation on the base metal, oxide layer, and water, both separately and jointly, on the corrosion of zirconium alloys. In this thesis, the beginning stages of this project, part of MUZIC-3, are presented. This involves verification of the effect of proton irradiation (which is used to represent neutron irradiation) on the base metal and characterization of the irradiated samples. The corrosion testing of this irradiated material will provide a reference for the effect of irradiation induced microstructure changes to the base metal on corrosion. In order to characterize the samples, chemical analyses and observations on crystallinity of secondary phase particles are needed. Along with the analysis of second-phase precipitates, assessment of dislocation loops to observe similarities between different radiation types is also required. Accordingly, samples were irradiated with charged particles (protons and zirconium ions) at the Michigan Ion Beam Laboratory and focused ion beam samples were prepared for transmission electron microscopy examination. The microstructure of the base metal is examined for a range of doses and irradiation temperatures and compared to the microstructure created under neutron irradiation as a preliminary to corrosion testing of irradiated samples. The results are discussed in light of existing literature.

Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation

Transmission Electron Microscopy Characterization of Zircaloy-4 Subjected to Ion Irradiation PDF Author: Joshua Samuel Bowman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In the operation of a nuclear reactor, the performance of the fuel cladding is critical to ensuring safe and reliable operation of the reactor. The current generation of Light Water Reactors utilizes claddings made from zirconium alloys. The material used for nuclear reactors must be able to withstand temperatures above 3000C while also being exposed to water, high pressures, and radiation. During operation, the zirconium cladding corrodes and picks up hydrogen which can adversely affect its performance. The corrosion mechanisms at work have yet to be fully characterized, especially the influence of irradiation. In order to better understand the mechanisms at work and characterize the behavior of zirconium alloys under reactor conditions, the Mechanistic Understanding of Zirconium Alloy Corrosion (MUZIC) consortium focused on the autoclave corrosion (MUZIC-1) and hydrogen pickup (MUZIC-2) outside of irradiation. The MUZIC-3 effort focuses on corrosion under irradiation. While it would be optimal to test reactor-irradiated samples, the difficulties posed by irradiating, corrosion testing, and examining these samples makes ion irradiation a more appealing manner of irradiation. Using doses and temperatures adjusted for substitution of protons for neutron radiation, this experiment seeks to characterize the effects of irradiation on the base metal, oxide layer, and water, both separately and jointly, on the corrosion of zirconium alloys. In this thesis, the beginning stages of this project, part of MUZIC-3, are presented. This involves verification of the effect of proton irradiation (which is used to represent neutron irradiation) on the base metal and characterization of the irradiated samples. The corrosion testing of this irradiated material will provide a reference for the effect of irradiation induced microstructure changes to the base metal on corrosion. In order to characterize the samples, chemical analyses and observations on crystallinity of secondary phase particles are needed. Along with the analysis of second-phase precipitates, assessment of dislocation loops to observe similarities between different radiation types is also required. Accordingly, samples were irradiated with charged particles (protons and zirconium ions) at the Michigan Ion Beam Laboratory and focused ion beam samples were prepared for transmission electron microscopy examination. The microstructure of the base metal is examined for a range of doses and irradiation temperatures and compared to the microstructure created under neutron irradiation as a preliminary to corrosion testing of irradiated samples. The results are discussed in light of existing literature.

Characterization of Zircaloy-4 Oxide Layers by Scanning Electron Microscopy

Characterization of Zircaloy-4 Oxide Layers by Scanning Electron Microscopy PDF Author: Michael Pantano
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description


Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: Gerry D. Moan
Publisher: ASTM International
ISBN: 0803128959
Category : Nuclear fuel claddings
Languages : en
Pages : 891

Get Book Here

Book Description
Annotation The 41 papers of this proceedings volume were first presented at the 13th symposium on Zirconium in the Nuclear Industry held in Annecy, France in June of 2001. Many of the papers are devoted to material related issues, corrosion and hydriding behavior, in-reactor studies, and the behavior and properties of Zr alloys used in storing spent fuel. Some papers report on studies of second phase particles, irradiation creep and growth, and material performance during loss of coolant and reactivity initiated accidents. Annotation copyrighted by Book News, Inc., Portland, OR.

Quantifying Irradiation Defects in Zirconium Alloys

Quantifying Irradiation Defects in Zirconium Alloys PDF Author: Levente Balogh
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 34

Get Book Here

Book Description
Irradiation-induced dislocations significantly affect the mechanical properties of zirconium alloys, altering slip and influencing creep and growth. Thus, the quantitative characterization of irradiation defects as a function of fluence, cold work, and/or thermal treatments is important for models that attempt to predict their impact on properties. Whole-pattern diffraction line-profile analysis (DLPA) is a well-established modern tool for microstructure characterization based on first-principle physical models for dislocation density measurements in plastically deformed materials. However, applying these DLPA methods directly to irradiated materials yields higher than expected dislocation density values compared with historical transmission electron microscopy (TEM) measurements and past line-broadening analysis studies calibrated to TEM observations. In an effort to understand these differences, a new microstructural model was developed for DLPA to specifically address dislocation structures consisting of elliptical a- and c-component loops. To compare the refined DLPA method with TEM measurements, high-resolution neutron diffraction patterns on nonirradiated and irradiated Zr-2.5Nb samples were collected with the Neutron Powder Diffractometer instrument at the Los Alamos Neutron Science Center and were evaluated. High-resolution TEM measurements were performed at the Reactor Materials Testing Laboratory, Queen's University, for comparison with the DLPA results. The capabilities and inherent uncertainties of both the refined DLPA and TEM methods are compared and discussed in detail. We show that the differences between the density values provided by DLPA and TEM are inherent to the methods and can be reconciled with the interpretation of the data.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: George P. Sabol
Publisher: ASTM International
ISBN: 0803124066
Category : Nuclear fuel claddings
Languages : en
Pages : 907

Get Book Here

Book Description


Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 632

Get Book Here

Book Description
NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author:
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 627

Get Book Here

Book Description


Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry PDF Author: J. H. Schemel
Publisher: ASTM International
ISBN: 9780803106017
Category : Business & Economics
Languages : en
Pages : 656

Get Book Here

Book Description


Zirconium in the Nuclear Industry: Tenth International Symposium

Zirconium in the Nuclear Industry: Tenth International Symposium PDF Author: A. M. Garde
Publisher: ASTM International
ISBN: 0803120117
Category : Nuclear fuel claddings
Languages : en
Pages : 805

Get Book Here

Book Description


Atom Probe Tomography

Atom Probe Tomography PDF Author: Michael K. Miller
Publisher: Springer Science & Business Media
ISBN: 1461542812
Category : Technology & Engineering
Languages : en
Pages : 247

Get Book Here

Book Description
The microanalytical technique of atom probe tomography (APT) permits the spatial coordinates and elemental identities of the individual atoms within a small volume to be determined with near atomic resolution. Therefore, atom probe tomography provides a technique for acquiring atomic resolution three dimensional images of the solute distribution within the microstructures of materials. This monograph is designed to provide researchers and students the necessary information to plan and experimentally conduct an atom probe tomography experiment. The techniques required to visualize and to analyze the resulting three-dimensional data are also described. The monograph is organized into chapters each covering a specific aspect of the technique. The development of this powerful microanalytical technique from the origins offield ion microscopy in 1951, through the first three-dimensional atom probe prototype built in 1986 to today's commercial state-of-the-art three dimensional atom probe is documented in chapter 1. A general introduction to atom probe tomography is also presented in chapter 1. The various methods to fabricate suitable needle-shaped specimens are presented in chapter 2. The procedure to form field ion images of the needle-shaped specimen is described in chapter 3. In addition, the appearance of microstructural features and the information that may be estimated from field ion microscopy are summarized. A brief account of the theoretical basis for processes of field ionization and field evaporation is also included.