Author: Channing C. Ahn
Publisher: John Wiley & Sons
ISBN: 3527604774
Category : Science
Languages : en
Pages : 472
Book Description
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.
Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas
Author: Channing C. Ahn
Publisher: John Wiley & Sons
ISBN: 3527604774
Category : Science
Languages : en
Pages : 472
Book Description
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.
Publisher: John Wiley & Sons
ISBN: 3527604774
Category : Science
Languages : en
Pages : 472
Book Description
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.
Electron Energy-Loss Spectroscopy in the Electron Microscope
Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491
Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491
Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.
Spectroscopy for Materials Characterization
Author: Simonpietro Agnello
Publisher: John Wiley & Sons
ISBN: 1119697328
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.
Publisher: John Wiley & Sons
ISBN: 1119697328
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.
Transmission Electron Energy Loss Spectrometry in Materials Science
Author: Mark Michael Disko
Publisher: Minerals, Metals, & Materials Society
ISBN:
Category : Science
Languages : en
Pages : 292
Book Description
This volume of conference proceedings characterizes the microstructure of materials ranging from polymers to superconductors. Electron energy loss spectrometry is a recent addition to the group of diffraction, imaging and spectroscopic techniques available for the study of materials by transmission electron microscope. The book is intended for the use of materials scientists who are looking for a combination of analytical tools and problem-solving approaches.
Publisher: Minerals, Metals, & Materials Society
ISBN:
Category : Science
Languages : en
Pages : 292
Book Description
This volume of conference proceedings characterizes the microstructure of materials ranging from polymers to superconductors. Electron energy loss spectrometry is a recent addition to the group of diffraction, imaging and spectroscopic techniques available for the study of materials by transmission electron microscope. The book is intended for the use of materials scientists who are looking for a combination of analytical tools and problem-solving approaches.
Scanning Transmission Electron Microscopy
Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Transmission Electron Microscopy
Author: David B. Williams
Publisher: Springer Science & Business Media
ISBN: 1475725191
Category : Science
Languages : en
Pages : 708
Book Description
Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.
Publisher: Springer Science & Business Media
ISBN: 1475725191
Category : Science
Languages : en
Pages : 708
Book Description
Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.
Transmission Electron Microscopy
Author: David B. Williams
Publisher: Springer Science & Business Media
ISBN: 038776500X
Category : Science
Languages : en
Pages : 804
Book Description
This groundbreaking text has been established as the market leader throughout the world. Profusely illustrated, the book provides the necessary instructions for successful hands-on application of this versatile materials characterization technique.
Publisher: Springer Science & Business Media
ISBN: 038776500X
Category : Science
Languages : en
Pages : 804
Book Description
This groundbreaking text has been established as the market leader throughout the world. Profusely illustrated, the book provides the necessary instructions for successful hands-on application of this versatile materials characterization technique.
Aberration-Corrected Analytical Transmission Electron Microscopy
Author: Rik Brydson
Publisher: John Wiley & Sons
ISBN: 1119979900
Category : Science
Languages : en
Pages : 235
Book Description
The book is concerned with the theory, background, and practical use of transmission electron microscopes with lens correctors that can correct the effects of spherical aberration. The book also covers a comparison with aberration correction in the TEM and applications of analytical aberration corrected STEM in materials science and biology. This book is essential for microscopists involved in nanoscale and materials microanalysis especially those using scanning transmission electron microscopy, and related analytical techniques such as electron diffraction x-ray spectrometry (EDXS) and electron energy loss spectroscopy (EELS).
Publisher: John Wiley & Sons
ISBN: 1119979900
Category : Science
Languages : en
Pages : 235
Book Description
The book is concerned with the theory, background, and practical use of transmission electron microscopes with lens correctors that can correct the effects of spherical aberration. The book also covers a comparison with aberration correction in the TEM and applications of analytical aberration corrected STEM in materials science and biology. This book is essential for microscopists involved in nanoscale and materials microanalysis especially those using scanning transmission electron microscopy, and related analytical techniques such as electron diffraction x-ray spectrometry (EDXS) and electron energy loss spectroscopy (EELS).
Transmission Electron Microscopy
Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Transmission Electron Microscopy
Author: Ludwig Reimer
Publisher: Springer
ISBN: 3662135531
Category : Science
Languages : en
Pages : 532
Book Description
The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresnel electron diffraction is treated using Huygens' principle. The recogni tion that the Fraunhofer-diffraction pattern is the Fourier transform of the wave amplitude behind a specimen is important because the influence of the imaging process on the contrast transfer of spatial frequencies can be described by introducing phase shifts and envelopes in the Fourier plane. In Chapter 4, the elements of an electron-optical column are described: the electron gun, the condenser and the imaging system. A thorough understanding of electron-specimen interactions is essential to explain image contrast.
Publisher: Springer
ISBN: 3662135531
Category : Science
Languages : en
Pages : 532
Book Description
The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresnel electron diffraction is treated using Huygens' principle. The recogni tion that the Fraunhofer-diffraction pattern is the Fourier transform of the wave amplitude behind a specimen is important because the influence of the imaging process on the contrast transfer of spatial frequencies can be described by introducing phase shifts and envelopes in the Fourier plane. In Chapter 4, the elements of an electron-optical column are described: the electron gun, the condenser and the imaging system. A thorough understanding of electron-specimen interactions is essential to explain image contrast.