Transient Integrated Wellbore Flow Modeling with Phase Change for Field Applications -

Transient Integrated Wellbore Flow Modeling with Phase Change for Field Applications - PDF Author: Dimitrios Voulanas
Publisher:
ISBN:
Category : Enhanced oil recovery
Languages : en
Pages : 0

Get Book Here

Book Description
The results of wellbore flow modeling of steam injection and gas condensate production field cases match well with observed data. In addition to the field cases, synthetic cases are also presented. These include variable wellhead mass, temperature, and pressure operations for production and injection regarding CO2, water or steam, hydrocarbons, and water-hydrocarbon mixtures while accounting for phase change. This simulator will assist operators and reservoir engineers to select the proper fluids and fluid properties at given operating conditions. It will also assist in designing and optimizing surface facilities, wellbores, and field operations, as well as deliver proper inputs to reservoir simulators.

Transient Fluid and Heat Flow Modeling in Coupled Wellbore/reservoir Systems

Transient Fluid and Heat Flow Modeling in Coupled Wellbore/reservoir Systems PDF Author: Bulent Izgec
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Modeling of changing pressure, temperature, and density profiles in a wellbore as a function of time is crucial for design and analysis of pressure-transient tests (particularly when data are gathered above perforations), real-time management of annular-pressure buildup (ABP) and identifying potential flow-assurance issues. Other applications of this modeling approach include improving design of production tubulars and artificial-lift systems and gathering pressure data for continuous reservoir management. This work presents a transient wellbore model coupled with a semianalytic temperature model for computing wellbore-fluid-temperature profile in flowing and shut-in wells. The accuracy of the analytic heat-transfer calculations improved with a variable-formation temperature model and a newly developed numerical-differentiation scheme. Surrounding formation temperature is updated in every timestep up to a user specified distance to account for changes in heat-transfer rate between the hotter wellbore fluid and the cooler formation. Matrix operations are not required for energy calculations because of the semianalytic formulation. This efficient coupling with the semianalytic heat-transfer model increased the computational speed significantly. Either an analytic or a numeric reservoir model can be coupled with the transient wellbore model for rapid computations of pressure, temperature, and velocity. The wellbore simulator is used for modeling a multirate test from a deep offshore well. Thermal distortion and its effects on pressure data is studied using the calibrated model, resulting in development of correlations for optimum gauge location in both oil and gas wells. Finally, predictive capabilities of the wellbore model are tested on multiple onshore wells experiencing annular-pressure buildup problems. Modeling results compare quite well with the field data and also with the state-of-the-art commercial wellbore simulator.

Integrated Flow Modeling

Integrated Flow Modeling PDF Author: John Fanchi
Publisher: Elsevier
ISBN: 0080534813
Category : Technology & Engineering
Languages : en
Pages : 305

Get Book Here

Book Description
Integrated Flow Modeling presents the formulation, development and application of an integrated flow simulator (IFLO). Integrated flow models make it possible to work directly with seismically generated data at any time during the life of the reservoir. An integrated flow model combines a traditional flow model with a petrophysical model. The text discusses properties of porous media within the context of multidisciplinary reservoir modeling, and presents the technical details needed to understand and apply the simulator to realistic problems. Exercises throughout the text direct the reader to software applications using IFLO input data sets and an executable version of IFLO provided with the text. The text-software combination provides the resources needed to convey both theoretical concepts and practical skills to geoscientists and engineers.

A Coupled Wellbore/reservoir Simulator to Model Multiphase Flow and Temperature Distribution

A Coupled Wellbore/reservoir Simulator to Model Multiphase Flow and Temperature Distribution PDF Author: Peyman Pourafshary
Publisher:
ISBN:
Category : Gas wells
Languages : en
Pages : 0

Get Book Here

Book Description
Hydrocarbon reserves are generally produced through wells drilled into reservoir pay zones. During production, gas liberation from the oil phase occurs due to pressure decline in the wellbore. Thus, we expect multiphase flow in some sections of the wellbore. As a multi-phase/multi-component gas-oil mixture flows from the reservoir to the surface, pressure, temperature, composition, and liquid holdup distributions are interrelated. Modeling these multiphase flow parameters is important to design production strategies such as artificial lift procedures. A wellbore fluid flow model can also be used for pressure transient test analysis and interpretation. Considering heat exchange in the wellbore is important to compute fluid flow parameters accurately. Modeling multiphase fluid flow in the wellbore becomes more complicated due to heat transfer between the wellbore fluids and the surrounding formations. Due to mass, momentum, and energy exchange between the wellbore and the reservoir, the wellbore model should be coupled with a numerical reservoir model to simulate fluid flow accurately. This model should be non-isothermal to consider the effect of temperature. Our research shows that, in some cases, ignoring compositional effects may lead to errors in pressure profile prediction for the wellbore. Nearly all multiphase wellbore simulations are currently performed using the "black oil" approach. The primary objective of this study was to develop a non-isothermal wellbore simulator to model transient fluid flow and temperature and couple the model to a reservoir simulator called General Purpose Adaptive Simulator (GPAS). The coupled wellbore/reservoir simulator can be applied to steady state problems, such as production from, or injection to a reservoir as well as during transient phenomena such as well tests to accurately model wellbore effects. Fluid flow in the wellbore may be modeled either using the blackoil approach or the compositional approach, as required by the complexity of the fluids. The simulation results of the new model were compared with field data for pressure gradients and temperature distribution obtained from wireline conveyed pressure recorder and acoustic fluid level measurements for a gas/oil producer well during a buildup test. The model results are in good agreement with the field data. Our simulator gave us further insights into the wellbore dynamics that occur during transient problems such as phase segregation and counter-current multiphase flow. We show that neglecting these multiphase flow dynamics would lead to unreliable results in well testing analysis.

Multiphase Transport of Hydrocarbons in Pipes

Multiphase Transport of Hydrocarbons in Pipes PDF Author: Juan J. Manzano-Ruiz
Publisher: John Wiley & Sons
ISBN: 1119888530
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
Multiphase Transport of Hydrocarbons in Pipes An introduction to multiphase flows in the oil and gas industry The term ‘multiphase flow’ refers to the concurrent flow of oil and/or gas, alongside other substances or materials such as production water, chemical inhibitors, and solids (e.g. sand). This is a critical topic in the oil and gas industry, where the presence of multiple flow phases in pipelines affects deliverability, generates serious complications in predicting flow performance for system design and operation, and requires specific risk mitigation actions and continuous maintenance. Chemical and Mechanical Engineers interested in working in this industry will benefit from understanding the basic theories and practices required to model and operate multiphase flows through pipelines, wells, and other components of the production system. Multiphase Transport of Hydrocarbons in Pipes meets this need with a comprehensive overview of five decades of research into multiphase flow. Incorporating fundamental theories, historic and cutting-edge multiphase flow models, and concrete examples of current and future applications. This book provides a sound technical background for prospective or working engineers in need of understanding this crucial area of industry. Readers will also find: Fundamental principles supporting commercial software Detailed tools for estimating multiphase flow rates through flowlines, wells, and more Integration of conservation principles with thermodynamic and transport properties Coverage of legacy and modern simulation models This book is ideal for flow assurance engineers, facilities engineers, oil and gas production engineers, and process engineers, as well as chemical and mechanical engineering students looking to work in any of these roles.

Development and Application of a Compositional Wellbore Simulator for Modeling Flow Assurance Issues and Optimization of Field Production

Development and Application of a Compositional Wellbore Simulator for Modeling Flow Assurance Issues and Optimization of Field Production PDF Author: Ali Abouie
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Get Book Here

Book Description
Flow assurance is crucial in the oil industry since it guarantees the success and economic production of hydrocarbon fluid, especially in offshore and deep water oil fields. In fact, the ultimate goal of flow assurance is to maintain flow in the wellbore and pipelines as long as possible. One of the most common challenges in flow assurance is the buildup of solids, such as asphaltene and scale particles. These Solid particles can deposit in the wellbore, flowline, and riser and affect the wellbore performance by reducing the cross section of the pipeline, which eventually results in pipeline blockage. Hence, neglecting the importance of flow assurance problems and failure in thorough understanding of the fluid behavior in the production systems may result in plugged pipeline, production loss, flowline replacement, and early abandonments of the well. As a result, continuous evaluations are needed at the development stage and during the life of reservoirs to predict the potential, the extent, and the severity of the problem to plan for inhibition and remediation jobs. In fact, it is more preferable to prevent flow assurance problems through the designing and operating procedures rather than remediating the problems, which has higher risks of success and higher loss of revenue due to frequent well shut down. As a part of this research, we enhanced the capabilities of our in-house compositional wellbore simulator (UTWELL) to model various production and flow assurance scenarios. Initially, we developed and implemented a robust gas lift model into UTWELL to model artificial lift technique for reservoirs with low pressure. The developed model is able to model both steady state and transient flow along with blackoil and Equation-of-State compositional models. The improved version was successfully validated against a commercial simulator. Then, we applied our dynamic model to track the behavior of asphaltene during gas lift processes and evaluated the risk of asphaltene deposition. Several deposition mechanisms were incorporated to study the transportation, entrainment, and deposition of solid particles in the wellbore. The simulation results illustrated the effect of light gas injection on asphaltene deposition and well performance. Finally, a step by step algorithm is presented for coupling a geochemical package, IPhreeqc, with UTWELL. The developed model is able to model homogenous and heterogeneous, non-isothermal, non-isobaric aqueous phase reactions assuming local equilibrium or kinetic conditions. This tool was then utilized to model scale deposition in the wellbore for various scenarios. In addition, the results showed that integrating IPhreeqc has promise in terms of CPU time compared to the traditional approach of reading and writing the input and output files.

Transient Non-isothermal Wellbore Fluid Flow and Heat Transfer Modeling

Transient Non-isothermal Wellbore Fluid Flow and Heat Transfer Modeling PDF Author: Mehdi Bahonar
Publisher:
ISBN: 9780494817490
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Model of Transient Two-phase Flow in a Wellbore

Numerical Model of Transient Two-phase Flow in a Wellbore PDF Author: Constance W. Miller
Publisher:
ISBN:
Category : Boring
Languages : en
Pages : 31

Get Book Here

Book Description


The Development of a Comprehensive Annular Flow Modeling Package for Two-phase Three-field Transient Safety Analysis Codes

The Development of a Comprehensive Annular Flow Modeling Package for Two-phase Three-field Transient Safety Analysis Codes PDF Author: Jeffrey W. Lane
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The annular two-phase flow regime is important to several applications and most notably the safety analysis of nuclear reactors. Such analyses require an accurate prediction of the phenomena associated with this regime, including the pressure gradient as well as the distribution of liquid and the interfield rate of exchange between the film and dispersed droplet fields. In general, the nuclear industry uses transient safety analysis codes, such as COBRA-TF, to predict phenomena of interest for various reactor accident scenarios and ensure the safe design of the system. COBRA-TF is a best-estimate thermal-hydraulic analysis tool developed for Light Water Reactors (LWR) and the primary feature of COBRA-TF is that it provides a three-field representation of two-phase flow (vapor/non-condensable gases, continuous liquid or films, and dispersed liquid or droplets). This representation is regarded as the most physically accurate approach for analyzing situations where liquid can coexist in both continuous and discrete forms, as is the case for annular-mist and counter-current flow situations, since substantial differences can exist in the velocity and flow direction for these two fields. The prediction of annular flow situations requires a variety of constitutive relationships to describe the mass, momentum, and energy exchange that occurs between the flow fields and provide closure to the set of momentum equations. An initial assessment of the predictive capability of COBRA-TF indicated that the modeling package that was used in the baseline version of the code did not provide adequate predictions when a variety of annular flow experiments were simulated. As a result, the goal of the current study was to assemble a physically-based and self-consistent annular flow modeling package that is amenable to implementation in three-field analysis environments and accurately captures the variation in entrainment and interfacial drag within co-current and counter-current regimes over the pressure range of interest (atmospheric to 2000-psia). The constitutive relations available in the open-literature were assessed relative to the models employed in the modeling package that was applied in the baseline version of COBRA-TF. Where necessary, model upgrades were made in an effort to utilize the most appropriate models that are based on either the physics of the flow or developed from experimental data collected over the desired range of conditions. The models that were incorporated into the newly proposed modeling package were either based on those developed in previous studies or developed uniquely within the current study. It is important to note that the current study used COBRA-TF to provide the baseline modeling package as a means for comparison and as a vehicle for assessing the newly proposed modeling packages; however, the proposed packages are amenable to implementation into any other three-field analysis tool. The proposed modeling packages for co-current and counter-current annular flow are outlined in Chapters 4 and 5, respectively. The co-current modeling package: 1) applies an interfacial shear model that explicitly accounts for the presence of interfacial waves, 2) idealizes the structure of the interface in a manner that is consistent with both the interfacial shear model and other visual observations, 3) includes three mechanistic-based entrainment rate models (roll wave stripping, Kelvin-Helmholtz lifting, and liquid bridge breakup) that calculate a theoretical entrainment rate for a single wave based on the physical structures and controlling phenomena as they are currently understood for each mechanism, and 4) provides a functional relationship between the actual and theoretical entrainment rates based on comparisons to experimental data to account for any deficiencies that exist in the theoretical model. This methodology improves the physical basis of the modeling package while simultaneously leveraging the available experimental data to ensure the modeling package is able to accurately reflect the experimental data. Meanwhile, the three-field Counter-Current Flow Limitation (CCFL) model developed in the current study is based on an empirical model that has been shown to suitably correlate specific sets of data over a wide range of flow path dimensions and geometries. The resulting correlation provides a quantitative description of the experimentally determined flooding curve. The proposed model compares the flow conditions predicted by the code to the results of the user-specified CCFL correlation to determine if the standard set of momentum equations should be replaced with a newly developed set of CCFL momentum equations. The proposed model also provides appropriate entrainment rate models (pool and excess film) and necessary criterion to exit the model in a stable manner. In general, this approach provides flexibility to the code user and again leverages the available experimental data to improve the predictive capability of the code since a universal model has yet to be determined for this phenomenon. While not entirely mechanistic, this approach ensures the proper amount of liquid flow can penetrate these regions, which is preeminent to achieving accurate predictions of coolant and temperature distributions for Loss-of-Coolant Accident (LOCA) scenarios. Overall the development of this model is a unique aspect of the current study because of the explicit treatment of the entrained field, which previously suggested models did not consider because they were aimed at two-field analysis environments. The results of the current study indicate that the inclusion of these newly proposed modeling packages for both co-current and counter-current annular flow has provided increased accuracy in the predictions of phenomena that are of interest to reactor safety analyses. In particular, the mean relative error in entrained fraction was reduced from 20.2% (underprediction) to 4.5% (overprediction) and the mean relative error in axial pressure gradient was reduced from 108.2% to 7.6% (both overprediction) for co-current upward annular flow situations following the implementation of these packages into COBRA-TF and the code-to-data agreement of several different parameters within the counter-current flow regime was improved significantly. It was also shown that the proposed co-current annular modeling package: 1) provided reasonable estimates of a variety of more fundamental annular flow parameters such as wave spacing, velocity, and intermittency, and 2) was able to capture the general behavior within the developing flow region. Both these results provide confidence that the proposed modeling package reasonably reflects the underlying physics of the annular regime. Moreover, the current study is one of the few works that has examined the predictive capabilities of transient analysis codes within the developing, or non-equilibrium, annular flow region. The methodology employed in the current study is not meant to provide a final solution to this complex problem; however, given the importance of these phenomena to the safety analysis of various reactor accident scenarios and the abundance of available experimental data, it would be inopportune not to employ this modeling methodology and improve the predictive capabilities of three-field transient analysis codes until a more viable approach is ascertained. Regardless, the current study has both provided a functional modeling package that has presently improved the predictive capabilities of three-field analysis tools and established a new baseline for future research and model development activities in this area.

Pressure Transient Testing

Pressure Transient Testing PDF Author: John Lee
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 378

Get Book Here

Book Description
Pressure Transient Testing presents the fundamentals of pressure-transient test analysis and design in clear, simple language and explains the theoretical bases of commercial well-test-analysis software. Test-analysis techniques are illustrated with complete and clearly written examples. Additional exercises for classroom or individual practice are provided. With its focus on physical processes and mathematical interpretation, this book appeals to all levels of engineers who want to understand how modern approaches work. Pressure transient test analysis is a mature technology in petroleum engineering; even so, it continues to evolve. Because of the developments in this technology since the last SPE textbook devoted to transient testing was published, we concluded that students could benefit from a textbook approach to the subject that includes a representative sampling of the more important fundamentals and applications. We deliberately distinguish between a textbook approach, which stresses understanding through numerous examples and exercises dealing with selected fundamentals and applications, and a monograph approach, which attempts to summarize the state-of-the-art in the technology. Computational methods that transient test analysts use have gone through a revolution since most existing texts on the subject were written. Most calculations are now done with commercial software or by spreadsheets or proprietary software developed by users to meet personal needs and objectives. These advances in software have greatly increased productivity in this technology, but they also have contributed to a "black box" approach to test analysis. In this text, we attempt to explain what's in the box, and we do not include a number of the modern tools that enhance individual engineer productivity. We hope, instead, to provide understanding so that the student can use the commercial software with greater appreciation and so that the student can read monographs and papers on transient testing with greater appreciation for the context of the subject. Accordingly, this text is but an introduction to the vast field of pressure transient test analysis.