Author: Yvon Gauthier
Publisher: Birkhäuser
ISBN: 331922087X
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Towards an Arithmetical Logic
Author: Yvon Gauthier
Publisher: Birkhäuser
ISBN: 331922087X
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Publisher: Birkhäuser
ISBN: 331922087X
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Arithmetic and Logic in Computer Systems
Author: Mi Lu
Publisher: John Wiley & Sons
ISBN: 0471726214
Category : Computers
Languages : en
Pages : 270
Book Description
Arithmetic and Logic in Computer Systems provides a useful guide to a fundamental subject of computer science and engineering. Algorithms for performing operations like addition, subtraction, multiplication, and division in digital computer systems are presented, with the goal of explaining the concepts behind the algorithms, rather than addressing any direct applications. Alternative methods are examined, and explanations are supplied of the fundamental materials and reasoning behind theories and examples. No other current books deal with this subject, and the author is a leading authority in the field of computer arithmetic. The text introduces the Conventional Radix Number System and the Signed-Digit Number System, as well as Residue Number System and Logarithmic Number System. This book serves as an essential, up-to-date guide for students of electrical engineering and computer and mathematical sciences, as well as practicing engineers and computer scientists involved in the design, application, and development of computer arithmetic units.
Publisher: John Wiley & Sons
ISBN: 0471726214
Category : Computers
Languages : en
Pages : 270
Book Description
Arithmetic and Logic in Computer Systems provides a useful guide to a fundamental subject of computer science and engineering. Algorithms for performing operations like addition, subtraction, multiplication, and division in digital computer systems are presented, with the goal of explaining the concepts behind the algorithms, rather than addressing any direct applications. Alternative methods are examined, and explanations are supplied of the fundamental materials and reasoning behind theories and examples. No other current books deal with this subject, and the author is a leading authority in the field of computer arithmetic. The text introduces the Conventional Radix Number System and the Signed-Digit Number System, as well as Residue Number System and Logarithmic Number System. This book serves as an essential, up-to-date guide for students of electrical engineering and computer and mathematical sciences, as well as practicing engineers and computer scientists involved in the design, application, and development of computer arithmetic units.
Towards an Arithmetical Logic
Author: Yvon Gauthier
Publisher: Birkhäuser
ISBN: 9783319220864
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Publisher: Birkhäuser
ISBN: 9783319220864
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Internal Logic
Author: Y. Gauthier
Publisher: Springer Science & Business Media
ISBN: 9781402006890
Category : Mathematics
Languages : en
Pages : 276
Book Description
Internal logic is the logic of content. The content is here arithmetic and the emphasis is on a constructive logic of arithmetic (arithmetical logic). Kronecker's general arithmetic of forms (polynomials) together with Fermat's infinite descent is put to use in an internal consistency proof. The view is developed in the context of a radical arithmetization of mathematics and logic and covers the many-faceted heritage of Kronecker's work, which includes not only Hilbert, but also Frege, Cantor, Dedekind, Husserl and Brouwer. The book will be of primary interest to logicians, philosophers and mathematicians interested in the foundations of mathematics and the philosophical implications of constructivist mathematics. It may also be of interest to historians, since it covers a fifty-year period, from 1880 to 1930, which has been crucial in the foundational debates and their repercussions on the contemporary scene.
Publisher: Springer Science & Business Media
ISBN: 9781402006890
Category : Mathematics
Languages : en
Pages : 276
Book Description
Internal logic is the logic of content. The content is here arithmetic and the emphasis is on a constructive logic of arithmetic (arithmetical logic). Kronecker's general arithmetic of forms (polynomials) together with Fermat's infinite descent is put to use in an internal consistency proof. The view is developed in the context of a radical arithmetization of mathematics and logic and covers the many-faceted heritage of Kronecker's work, which includes not only Hilbert, but also Frege, Cantor, Dedekind, Husserl and Brouwer. The book will be of primary interest to logicians, philosophers and mathematicians interested in the foundations of mathematics and the philosophical implications of constructivist mathematics. It may also be of interest to historians, since it covers a fifty-year period, from 1880 to 1930, which has been crucial in the foundational debates and their repercussions on the contemporary scene.
Bounded Arithmetic, Propositional Logic and Complexity Theory
Author: Jan Krajicek
Publisher: Cambridge University Press
ISBN: 0521452058
Category : Computers
Languages : en
Pages : 361
Book Description
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.
Publisher: Cambridge University Press
ISBN: 0521452058
Category : Computers
Languages : en
Pages : 361
Book Description
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.
A First Course in Mathematical Logic and Set Theory
Author: Michael L. O'Leary
Publisher: John Wiley & Sons
ISBN: 1118548019
Category : Mathematics
Languages : en
Pages : 464
Book Description
A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.
Publisher: John Wiley & Sons
ISBN: 1118548019
Category : Mathematics
Languages : en
Pages : 464
Book Description
A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.
Formal Methods
Author: E.W. Beth
Publisher: Springer Science & Business Media
ISBN: 9401032696
Category : Philosophy
Languages : en
Pages : 184
Book Description
Many philosophers have considered logical reasoning as an inborn ability of mankind and as a distinctive feature in the human mind; but we all know that the distribution of this capacity, or at any rate its development, is very unequal. Few people are able to set up a cogent argument; others are at least able to follow a logical argument and even to detect logical fallacies. Nevertheless, even among educated persons there are many who do not even attain this relatively modest level of development. According to my personal observations, lack of logical ability may be due to various circumstances. In the first place, I mention lack of general intelligence, insufficient power of concentration, and absence of formal education. Secondly, however, I have noticed that many people are unable, or sometimes rather unwilling, to argue ex hypothesi; such persons cannot, or will not, start from premisses which they know or believe to be false or even from premisses whose truth is not, in their opinion, sufficient ly warranted. Or, if they agree to start from such premisses, they sooner or later stray away from the argument into attempts first to settle the truth or falsehood of the premisses. Presumably this attitude results either from lack of imagination or from undue moral rectitude. On the other hand, proficiency in logical reasoning is not in itself a guarantee for a clear theoretic insight into the principles and foundations of logic.
Publisher: Springer Science & Business Media
ISBN: 9401032696
Category : Philosophy
Languages : en
Pages : 184
Book Description
Many philosophers have considered logical reasoning as an inborn ability of mankind and as a distinctive feature in the human mind; but we all know that the distribution of this capacity, or at any rate its development, is very unequal. Few people are able to set up a cogent argument; others are at least able to follow a logical argument and even to detect logical fallacies. Nevertheless, even among educated persons there are many who do not even attain this relatively modest level of development. According to my personal observations, lack of logical ability may be due to various circumstances. In the first place, I mention lack of general intelligence, insufficient power of concentration, and absence of formal education. Secondly, however, I have noticed that many people are unable, or sometimes rather unwilling, to argue ex hypothesi; such persons cannot, or will not, start from premisses which they know or believe to be false or even from premisses whose truth is not, in their opinion, sufficient ly warranted. Or, if they agree to start from such premisses, they sooner or later stray away from the argument into attempts first to settle the truth or falsehood of the premisses. Presumably this attitude results either from lack of imagination or from undue moral rectitude. On the other hand, proficiency in logical reasoning is not in itself a guarantee for a clear theoretic insight into the principles and foundations of logic.
Principia Mathematica
Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
An Introduction to Mathematical Logic and Type Theory
Author: Peter B. Andrews
Publisher: Springer Science & Business Media
ISBN: 9401599343
Category : Mathematics
Languages : en
Pages : 404
Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Publisher: Springer Science & Business Media
ISBN: 9401599343
Category : Mathematics
Languages : en
Pages : 404
Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
A Mathematical Introduction to Logic
Author: Herbert B. Enderton
Publisher: Elsevier
ISBN: 0080496466
Category : Computers
Languages : en
Pages : 330
Book Description
A Mathematical Introduction to Logic
Publisher: Elsevier
ISBN: 0080496466
Category : Computers
Languages : en
Pages : 330
Book Description
A Mathematical Introduction to Logic