Phase Transition Dynamics

Phase Transition Dynamics PDF Author: Tian Ma
Publisher: Springer Science & Business Media
ISBN: 1461489636
Category : Mathematics
Languages : en
Pages : 575

Get Book Here

Book Description
This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields.

Phase Transition Dynamics

Phase Transition Dynamics PDF Author: Tian Ma
Publisher: Springer Science & Business Media
ISBN: 1461489636
Category : Mathematics
Languages : en
Pages : 575

Get Book Here

Book Description
This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields.

Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions

Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions PDF Author: Yuriy M. Bunkov
Publisher: Springer Science & Business Media
ISBN: 9780792362050
Category : Science
Languages : en
Pages : 70

Get Book Here

Book Description
Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.

Topological Phase Transitions And New Developments

Topological Phase Transitions And New Developments PDF Author: Lars Brink
Publisher: World Scientific
ISBN: 9813271353
Category : Science
Languages : en
Pages : 263

Get Book Here

Book Description
Geometry and topology have been a fascination in physics since the start of the 20th century. A leading example is Einstein's geometrical theory of gravity. At the beginning of the 1970s, topological ideas entered areas of condensed matter physics. These advances were driven by new seminal ideas resolving a serious contradiction between experiment and the standard interpretation of a rigorous mathematical theorem which led to the study of new exotic topological phases of matter. Topological defect driven phase transitions in thin, two dimensional films of superfluids, superconductors and crystals have provided great insight into the mechanism governing these topological phases present in those physical systems. Moreover, many of these topological properties remain 'protected' against disorder and topological distortion perturbations. An example of possible applications of such robustness to perturbations is in the search for encoding information in quantum computers, potentially providing the platform for fault-tolerant quantum computations.In the past four decades, the discovery of topological phases engendered great interest in condensed matter physics. It also attracted the attention of researchers working on quantum information, quantum materials and simulations, high energy physics and string theory. This unique volume contains articles written by some of the most prominent names in the field, including Nobel Laureate John Michael Kosterlitz and Professor Jorge V José. They originate from talks and discussions by leading experts at a recent workshop. They review previous works as well as addressing contemporary developments in the most pressing and important issues on various aspects of topological phases and topological phase transitions.

Topological Phases of Matter

Topological Phases of Matter PDF Author: Roderich Moessner
Publisher: Cambridge University Press
ISBN: 1107105536
Category : Mathematics
Languages : en
Pages : 393

Get Book Here

Book Description
This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.

Understanding Quantum Phase Transitions

Understanding Quantum Phase Transitions PDF Author: Lincoln Carr
Publisher: CRC Press
ISBN: 1439802610
Category : Science
Languages : en
Pages : 754

Get Book Here

Book Description
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivit

Topological Quantum Numbers In Nonrelativistic Physics

Topological Quantum Numbers In Nonrelativistic Physics PDF Author: David Thouless
Publisher: World Scientific
ISBN: 9814498033
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Topological quantum numbers are distinguished from quantum numbers based on symmetry because they are insensitive to the imperfections of the systems in which they are observed. They have become very important in precision measurements in recent years, and provide the best measurements of voltage and electrical resistance. This book describes the theory of such quantum numbers, starting with Dirac's argument for the quantization of electric charge, and continuing with discussions on the helium superfluids, flux quantization and the Josephson effect in superconductors, the quantum Hall effect, solids and liquid crystals, and topological phase transitions. The accompanying reprints include some of the classic experimental and theoretical papers in this area.Physicists — both experimental and theoretical — who are interested in the topic will find this book an invaluable reference.

Quantum Analogues: From Phase Transitions to Black Holes and Cosmology

Quantum Analogues: From Phase Transitions to Black Holes and Cosmology PDF Author: William Unruh
Publisher: Springer
ISBN: 3540708596
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.

A Short Course on Topological Insulators

A Short Course on Topological Insulators PDF Author: János K. Asbóth
Publisher: Springer
ISBN: 3319256076
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Equilibrium Statistical Physics

Equilibrium Statistical Physics PDF Author: M. Baus
Publisher: Springer Science & Business Media
ISBN: 3540746323
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.

Complex Nonlinearity

Complex Nonlinearity PDF Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 3540793577
Category : Science
Languages : en
Pages : 855

Get Book Here

Book Description
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.