Author: Harry Dym
Publisher: Springer Science & Business Media
ISBN: 9783764357238
Category : Mathematics
Languages : en
Pages : 526
Book Description
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
Topics In Interpolation Theory
Author: Harry Dym
Publisher: Springer Science & Business Media
ISBN: 9783764357238
Category : Mathematics
Languages : en
Pages : 526
Book Description
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
Publisher: Springer Science & Business Media
ISBN: 9783764357238
Category : Mathematics
Languages : en
Pages : 526
Book Description
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation problems in the Stieltjes class.- On recovering a multiplicative integral from its modulus.- On Schur functions and Szegö orthogonal polynomials.- Hilbert spaces of entire functions as a J theory subject.- On transformations of Potapov's fundamental matrix inequality.- An abstract interpolation problem and the extension theory of isometric operators.- On the theory of matrix-valued functions belonging to the Smirnov class.- Integral representation of function of class Ka.- On the theory of entire matrix-functions of exponential type.- Analogs of Nehari and Sarason theorems for character-automorphic functions and some related questions.- The Blaschke-Potapov factorization theorem and the theory of nonselfadjoint operators.- Weyl matrix circles as a tool for uniqueness in the theory of multiplicative representation of J-inner functions.- On a criterion of positive definiteness.- Matrix boundary value problems with eigenvalue dependent boundary conditions (The linear case).- Weyl-Titchmarsh functions of the canonical periodical system of differential equations.- On boundary values of functions regular in a disk.
Function Spaces, Interpolation Theory and Related Topics
Author: Michael Cwikel
Publisher: Walter de Gruyter
ISBN: 3110198053
Category : Mathematics
Languages : en
Pages : 473
Book Description
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
Publisher: Walter de Gruyter
ISBN: 3110198053
Category : Mathematics
Languages : en
Pages : 473
Book Description
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
Interpolation Theory
Author: Alessandra Lunardi
Publisher: Edizioni della Normale
ISBN: 9788876426391
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.
Publisher: Edizioni della Normale
ISBN: 9788876426391
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.
Interpolation and Approximation by Polynomials
Author: George M. Phillips
Publisher: Springer Science & Business Media
ISBN: 0387216820
Category : Mathematics
Languages : en
Pages : 325
Book Description
In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.
Publisher: Springer Science & Business Media
ISBN: 0387216820
Category : Mathematics
Languages : en
Pages : 325
Book Description
In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.
Interpolation Theory, Systems Theory and Related Topics
Author: Daniel Alpay
Publisher: Birkhäuser
ISBN: 3034882157
Category : Mathematics
Languages : en
Pages : 420
Book Description
This volume is dedicated to Harry Dym, a leading expert in operator theory, on the occasion of his sixtieth birthday. The book opens with an autobiographical sketch, a list of publications and a personal account of I. Gohberg on his collaboration with Harry Dym. The mathematical papers cover Krein space operator theory, Schur analysis and interpolation, several complex variables and Riemann surfaces, matrix theory, system theory, and differential equations and mathematical physics. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Publisher: Birkhäuser
ISBN: 3034882157
Category : Mathematics
Languages : en
Pages : 420
Book Description
This volume is dedicated to Harry Dym, a leading expert in operator theory, on the occasion of his sixtieth birthday. The book opens with an autobiographical sketch, a list of publications and a personal account of I. Gohberg on his collaboration with Harry Dym. The mathematical papers cover Krein space operator theory, Schur analysis and interpolation, several complex variables and Riemann surfaces, matrix theory, system theory, and differential equations and mathematical physics. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Interpolation and Approximation
Author: Philip J. Davis
Publisher: Courier Corporation
ISBN: 0486624951
Category : Mathematics
Languages : en
Pages : 418
Book Description
Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486624951
Category : Mathematics
Languages : en
Pages : 418
Book Description
Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.
Interpolation Spaces
Author: J. Bergh
Publisher: Springer Science & Business Media
ISBN: 3642664512
Category : Mathematics
Languages : en
Pages : 218
Book Description
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.
Publisher: Springer Science & Business Media
ISBN: 3642664512
Category : Mathematics
Languages : en
Pages : 218
Book Description
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.
Interpolation of Functions
Author: J. Szabados
Publisher: World Scientific
ISBN: 9789971509156
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book gives a systematic survey on the most significant results of interpolation theory in the last forty years. It deals with Lagrange interpolation including lower estimates, fine and rough theory, interpolatory proofs of Jackson and Teliakovski-Gopengauz theorems, Lebesgue function, Lebesgue constant of Lagrange interpolation, Bernstein and Erdös conjecture on the optimal nodes, the almost everywhere divergence of Lagrange interpolation for arbitrary system of nodes, Hermite-Fejer type and lacunary interpolation and other related topics.
Publisher: World Scientific
ISBN: 9789971509156
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book gives a systematic survey on the most significant results of interpolation theory in the last forty years. It deals with Lagrange interpolation including lower estimates, fine and rough theory, interpolatory proofs of Jackson and Teliakovski-Gopengauz theorems, Lebesgue function, Lebesgue constant of Lagrange interpolation, Bernstein and Erdös conjecture on the optimal nodes, the almost everywhere divergence of Lagrange interpolation for arbitrary system of nodes, Hermite-Fejer type and lacunary interpolation and other related topics.
Interpolation Processes
Author: Giuseppe Mastroianni
Publisher: Springer Science & Business Media
ISBN: 3540683496
Category : Mathematics
Languages : en
Pages : 452
Book Description
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. Vértesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses,usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness,K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.
Publisher: Springer Science & Business Media
ISBN: 3540683496
Category : Mathematics
Languages : en
Pages : 452
Book Description
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. Vértesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses,usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness,K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.
Advanced Topics in Shannon Sampling and Interpolation Theory
Author: Robert J.II Marks
Publisher: Springer Science & Business Media
ISBN: 146139757X
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Advanced Topics in Shannon Sampling and Interpolation Theory is the second volume of a textbook on signal analysis solely devoted to the topic of sampling and restoration of continuous time signals and images. Sampling and reconstruction are fundamental problems in any field that deals with real-time signals or images, including communication engineering, image processing, seismology, speech recognition, and digital signal processing. This second volume includes contributions from leading researchers in the field on such topics as Gabor's signal expansion, sampling in optical image formation, linear prediction theory, polar and spiral sampling theory, interpolation from nonuniform samples, an extension of Papoulis's generalized sampling expansion to higher dimensions, and applications of sampling theory to optics and to time-frequency representations. The exhaustive bibliography on Shannon sampling theory will make this an invaluable research tool as well as an excellent text for students planning further research in the field.
Publisher: Springer Science & Business Media
ISBN: 146139757X
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Advanced Topics in Shannon Sampling and Interpolation Theory is the second volume of a textbook on signal analysis solely devoted to the topic of sampling and restoration of continuous time signals and images. Sampling and reconstruction are fundamental problems in any field that deals with real-time signals or images, including communication engineering, image processing, seismology, speech recognition, and digital signal processing. This second volume includes contributions from leading researchers in the field on such topics as Gabor's signal expansion, sampling in optical image formation, linear prediction theory, polar and spiral sampling theory, interpolation from nonuniform samples, an extension of Papoulis's generalized sampling expansion to higher dimensions, and applications of sampling theory to optics and to time-frequency representations. The exhaustive bibliography on Shannon sampling theory will make this an invaluable research tool as well as an excellent text for students planning further research in the field.