Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity

Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity PDF Author: Koichi Hashiguchi
Publisher: Elsevier
ISBN: 0128194294
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient

Topics in Finite Elasticity

Topics in Finite Elasticity PDF Author: Michael Hayes
Publisher: Springer
ISBN: 3709125820
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
More than fifty years ago, Professor R. S. Rivlin pioneered developments in both the theory and experiments of rubber elasticity. These together with his other fundamental studies contributed to a revitalization of the theory of finite elasticity, which had been dormant, since the basic understanding was completed in the nineteenth century. This book with chapters on foundation, models, universal results, wave propagation, qualitative theory and phase transitions, indicates that the subject he reinvigorated has remainded remarkably vibran and has continued to present significant deep mathematical and experimental challenges.

Topics in Finite Elasticity

Topics in Finite Elasticity PDF Author: Morton E. Gurtin
Publisher: SIAM
ISBN: 9781611970340
Category : Technology & Engineering
Languages : en
Pages : 63

Get Book Here

Book Description
Finite elasticity is a theory of elastic materials that are capable of undergoing large deformations. This theory is inherently nonlinear and is mathematically quite complex. This monograph presents a derivation of the basic equations of the theory, a discussion of the general boundary-value problems, and a treatment of several interesting and important special topics such as simple shear, uniqueness, the tensile deformations of a cube, and antiplane shear. The monograph is intended for engineers, physicists, and mathematicians.

Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity

Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity PDF Author: Koichi Hashiguchi
Publisher: Elsevier
ISBN: 0128194294
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient

Contact Problems in Elasticity

Contact Problems in Elasticity PDF Author: N. Kikuchi
Publisher: SIAM
ISBN: 9781611970845
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.

Collected Papers of R.S. Rivlin

Collected Papers of R.S. Rivlin PDF Author: Grigory I. Barenblatt
Publisher: Springer Science & Business Media
ISBN: 1461224160
Category : Technology & Engineering
Languages : en
Pages : 2868

Get Book Here

Book Description
R.S. Rivlin is one of the principal architects of nonlinear continuum mechanics: His work on the mechanics of rubber (in the 1940s and 50s) established the basis of finite elasticity theory. These volumes make most of his scientific papers available again and show the full scope and significance of his contributions.

An Introduction to the Theory of Elasticity

An Introduction to the Theory of Elasticity PDF Author: R. J. Atkin
Publisher: Courier Corporation
ISBN: 0486150992
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.

Computational Elasticity

Computational Elasticity PDF Author: Mohammed Ameen
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652015
Category : Boundary element methods
Languages : en
Pages : 540

Get Book Here

Book Description


Elasticity

Elasticity PDF Author: Robert William Soutas-Little
Publisher: Courier Corporation
ISBN: 0486150070
Category : Science
Languages : en
Pages : 468

Get Book Here

Book Description
A comprehensive survey of the methods and theories of linear elasticity, this three-part introductory treatment covers general theory, two-dimensional elasticity, and three-dimensional elasticity. Ideal text for a two-course sequence on elasticity. 1984 edition.

Finite Elasticity And Viscoelasticity: A Course In The Nonlinear Mechanics Of Solids

Finite Elasticity And Viscoelasticity: A Course In The Nonlinear Mechanics Of Solids PDF Author: Aleksey Drozdov
Publisher: World Scientific
ISBN: 9814499757
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
This book provides a systematic and self-consistent introduction to the nonlinear continuum mechanics of solids, from the main axioms to comprehensive aspects of the theory. The objective is to expose the most intriguing aspects of elasticity and viscoelasticity with finite strains in such a way as to ensure mathematical correctness, on the one hand, and to demonstrate a wide spectrum of physical phenomena typical only of nonlinear mechanics, on the other.A novel aspect of the book is that it contains a number of examples illustrating surprising behaviour in materials with finite strains, as well as comparisons between theoretical predictions and experimental data for rubber-like polymers and elastomers.The book aims to fill a gap between mathematicians specializing in nonlinear continuum mechanics, and physicists and engineers who apply the methods of solid mechanics to a wide range of problems in civil and mechanical engineering, materials science, and polymer physics. The book has been developed from a graduate course in applied mathematics which the author has given for a number of years.

Elasticity and Plasticity of Large Deformations

Elasticity and Plasticity of Large Deformations PDF Author: Albrecht Bertram
Publisher: Springer Nature
ISBN: 3030723283
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention.