Author: Yanghua Wang
Publisher: Elsevier
ISBN: 0080540872
Category : Science
Languages : en
Pages : 271
Book Description
This is the first book of its kind on seismic amplitude inversion in the context of reflection tomography. The aim of the monograph is to advocate the use of ray-amplitude data, separately or jointly with traveltime data, in reflection seismic tomography.The emphasis of seismic exploration is on imaging techniques, so that seismic section can be interpreted directly as a geological section. In contrast it is perhaps ironic that, in decades of industrial seismology, one major aspect of waveform data that potentially is easier to measure and analyse has generally been ignored. That is, the information content of seismic amplitudes. Perhaps the potential complexity has deterred most researchers from a more thorough investigation of the practical use of seismic amplitude data. The author of this volume presents an authoritative and detailed study of amplitude data, as used in conjunction with traveltime data, to provide better constraints on the variation of seismic wave speed in the subsurface.One of the fundamental problems in conventional reflection seismic tomography using only traveltime data is the possible ambiguity between the velocity variation and the reflector depth. The inclusion of amplitude data in the inversion may help to resolve this problem because the amplitudes and traveltimes are sensitive to different features of the subsurface model, and thereby provide more accurate information about the subsurface structure and the velocity distribution. An essential goal of this monograph is to make the amplitude inversion method work with real reflection seismic data.
Seismic Amplitude Inversion in Reflection Tomography
Author: Yanghua Wang
Publisher: Elsevier
ISBN: 0080540872
Category : Science
Languages : en
Pages : 271
Book Description
This is the first book of its kind on seismic amplitude inversion in the context of reflection tomography. The aim of the monograph is to advocate the use of ray-amplitude data, separately or jointly with traveltime data, in reflection seismic tomography.The emphasis of seismic exploration is on imaging techniques, so that seismic section can be interpreted directly as a geological section. In contrast it is perhaps ironic that, in decades of industrial seismology, one major aspect of waveform data that potentially is easier to measure and analyse has generally been ignored. That is, the information content of seismic amplitudes. Perhaps the potential complexity has deterred most researchers from a more thorough investigation of the practical use of seismic amplitude data. The author of this volume presents an authoritative and detailed study of amplitude data, as used in conjunction with traveltime data, to provide better constraints on the variation of seismic wave speed in the subsurface.One of the fundamental problems in conventional reflection seismic tomography using only traveltime data is the possible ambiguity between the velocity variation and the reflector depth. The inclusion of amplitude data in the inversion may help to resolve this problem because the amplitudes and traveltimes are sensitive to different features of the subsurface model, and thereby provide more accurate information about the subsurface structure and the velocity distribution. An essential goal of this monograph is to make the amplitude inversion method work with real reflection seismic data.
Publisher: Elsevier
ISBN: 0080540872
Category : Science
Languages : en
Pages : 271
Book Description
This is the first book of its kind on seismic amplitude inversion in the context of reflection tomography. The aim of the monograph is to advocate the use of ray-amplitude data, separately or jointly with traveltime data, in reflection seismic tomography.The emphasis of seismic exploration is on imaging techniques, so that seismic section can be interpreted directly as a geological section. In contrast it is perhaps ironic that, in decades of industrial seismology, one major aspect of waveform data that potentially is easier to measure and analyse has generally been ignored. That is, the information content of seismic amplitudes. Perhaps the potential complexity has deterred most researchers from a more thorough investigation of the practical use of seismic amplitude data. The author of this volume presents an authoritative and detailed study of amplitude data, as used in conjunction with traveltime data, to provide better constraints on the variation of seismic wave speed in the subsurface.One of the fundamental problems in conventional reflection seismic tomography using only traveltime data is the possible ambiguity between the velocity variation and the reflector depth. The inclusion of amplitude data in the inversion may help to resolve this problem because the amplitudes and traveltimes are sensitive to different features of the subsurface model, and thereby provide more accurate information about the subsurface structure and the velocity distribution. An essential goal of this monograph is to make the amplitude inversion method work with real reflection seismic data.
Seismic Inversion
Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 1119257980
Category : Science
Languages : en
Pages : 258
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Publisher: John Wiley & Sons
ISBN: 1119257980
Category : Science
Languages : en
Pages : 258
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Seismic Inverse Q Filtering
Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 1444300423
Category : Science
Languages : en
Pages : 248
Book Description
Seismic inverse Q filtering is a data processing technology for enhancing the resolution of seismic images. It employs a wave propagation reversal procedure that compensates for energy absorption and corrects wavelet distortion due to velocity dispersion. By compensating for amplitude attenuation, seismic data can provide true relative-amplitude information for amplitude inversion and subsequent reservoir characterization. By correcting the phase distortion, seismic data with enhanced vertical resolution can yield correct timings for lithological identification. This monograph presents the theory of inverse Q filtering and a series of algorithms, collected with the following selection criteria in mind: robustness, effectiveness and practicality. The book is written for processing geophysicists who are attempting to improve the quality of seismic data in terms of resolution and signal-to-noise ratio, as well as for reservoir geophysicists who are concerned about seismic fidelity in terms of true amplitudes, true timings and true frequencies. It will also be particularly valuable as a guide for seasoned geophysicists who are attempting to develop seismic software for various research settings. Finally, it can be used as a reference work or textbook for postgraduate students in seismic and reservoir geophysics.
Publisher: John Wiley & Sons
ISBN: 1444300423
Category : Science
Languages : en
Pages : 248
Book Description
Seismic inverse Q filtering is a data processing technology for enhancing the resolution of seismic images. It employs a wave propagation reversal procedure that compensates for energy absorption and corrects wavelet distortion due to velocity dispersion. By compensating for amplitude attenuation, seismic data can provide true relative-amplitude information for amplitude inversion and subsequent reservoir characterization. By correcting the phase distortion, seismic data with enhanced vertical resolution can yield correct timings for lithological identification. This monograph presents the theory of inverse Q filtering and a series of algorithms, collected with the following selection criteria in mind: robustness, effectiveness and practicality. The book is written for processing geophysicists who are attempting to improve the quality of seismic data in terms of resolution and signal-to-noise ratio, as well as for reservoir geophysicists who are concerned about seismic fidelity in terms of true amplitudes, true timings and true frequencies. It will also be particularly valuable as a guide for seasoned geophysicists who are attempting to develop seismic software for various research settings. Finally, it can be used as a reference work or textbook for postgraduate students in seismic and reservoir geophysics.
Advances in Geophysics
Author:
Publisher: Elsevier
ISBN: 0080522351
Category : Science
Languages : en
Pages : 293
Book Description
The critically acclaimed serialized review journal for nearly fifty years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 45 volumes, the Serial contains much material still relevant today—truly an essential publication for researchers in all fields of geophysics.
Publisher: Elsevier
ISBN: 0080522351
Category : Science
Languages : en
Pages : 293
Book Description
The critically acclaimed serialized review journal for nearly fifty years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 45 volumes, the Serial contains much material still relevant today—truly an essential publication for researchers in all fields of geophysics.
Seismic Inversion
Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Seismic Inversion
Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 1119258049
Category : Science
Languages : en
Pages : 256
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Publisher: John Wiley & Sons
ISBN: 1119258049
Category : Science
Languages : en
Pages : 256
Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Seismic Imaging: a Practical Approach
Author: Jean-Luc Mari
Publisher:
ISBN: 9782759823512
Category : Science
Languages : en
Pages : 0
Book Description
In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields.
Publisher:
ISBN: 9782759823512
Category : Science
Languages : en
Pages : 0
Book Description
In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields.
Full Seismic Waveform Modelling and Inversion
Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352
Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Offset-dependent Reflectivity
Author: John P. Castagna
Publisher: SEG Books
ISBN: 1560800593
Category : Science
Languages : en
Pages : 356
Book Description
Recognizing the need for education and further research in AVO, the editors have compiled an all-encompassing treatment of this versatile technology. In addition to providing a general introduction to the subject and a review of the current state of the art, this unique volume provides useful reference materials and data plus original contributions at the leading edge of AVO technologies.
Publisher: SEG Books
ISBN: 1560800593
Category : Science
Languages : en
Pages : 356
Book Description
Recognizing the need for education and further research in AVO, the editors have compiled an all-encompassing treatment of this versatile technology. In addition to providing a general introduction to the subject and a review of the current state of the art, this unique volume provides useful reference materials and data plus original contributions at the leading edge of AVO technologies.
Seismic Tomography
Author: H.M. Iyer
Publisher: Springer Science & Business Media
ISBN: 9780412371905
Category : Science
Languages : en
Pages : 890
Book Description
This book provides a systematic review of tomographic applications in seismology and the future directions. Theories and case histories are discussed by the international authors, drawing on their own practical experiences with global and local case histories.
Publisher: Springer Science & Business Media
ISBN: 9780412371905
Category : Science
Languages : en
Pages : 890
Book Description
This book provides a systematic review of tomographic applications in seismology and the future directions. Theories and case histories are discussed by the international authors, drawing on their own practical experiences with global and local case histories.