Time Series Analysis of Irregularly Observed Data

Time Series Analysis of Irregularly Observed Data PDF Author: E. Parzen
Publisher: Springer Science & Business Media
ISBN: 1468494031
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
With the support of the Office of Naval Research Program on Statistics and Probability (Dr. Edward J. Wegman, Director), The Department of Statistics at Texas A&M University hosted a Symposium on Time Series Analysis of Irregularly Observed Data during the period February 10-13, 1983. The symposium aimed to provide a review of the state of the art, define outstanding problems for research by theoreticians, transmit to practitioners recently developed algorithms, and stimulate interaction between statisticians and researchers in subject matter fields. Attendance was limited to actively involved researchers. This volume contains refereed versions of the papers presented at the Symposium. We would like to express our appreciation to the many colleagues and staff members whose cheerful help made the Symposium a successful happening which was enjoyed socially and intellectually by all participants. I would like to especially thank Dr. Donald W. Marquardt whose interest led me to undertake to organize this Symposium. This volume is dedicated to the world wide community of researchers who develop and apply methods of statistical analysis of time series. r:;) \J Picture Caption Participants in Symposium on Time Series Analysis of Irregularly Observed Data at Texas A&M University, College Station, Texas, February 10-13, 1983 First Row: Henry L. Gray, D. W. Marquardt, P. M. Robinson, Emanuel Parzen, Julia Abrahams, E. Masry, H. L. Weinert, R. H. Shumway.

Time Series Analysis of Irregularly Observed Data

Time Series Analysis of Irregularly Observed Data PDF Author: E. Parzen
Publisher: Springer Science & Business Media
ISBN: 1468494031
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
With the support of the Office of Naval Research Program on Statistics and Probability (Dr. Edward J. Wegman, Director), The Department of Statistics at Texas A&M University hosted a Symposium on Time Series Analysis of Irregularly Observed Data during the period February 10-13, 1983. The symposium aimed to provide a review of the state of the art, define outstanding problems for research by theoreticians, transmit to practitioners recently developed algorithms, and stimulate interaction between statisticians and researchers in subject matter fields. Attendance was limited to actively involved researchers. This volume contains refereed versions of the papers presented at the Symposium. We would like to express our appreciation to the many colleagues and staff members whose cheerful help made the Symposium a successful happening which was enjoyed socially and intellectually by all participants. I would like to especially thank Dr. Donald W. Marquardt whose interest led me to undertake to organize this Symposium. This volume is dedicated to the world wide community of researchers who develop and apply methods of statistical analysis of time series. r:;) \J Picture Caption Participants in Symposium on Time Series Analysis of Irregularly Observed Data at Texas A&M University, College Station, Texas, February 10-13, 1983 First Row: Henry L. Gray, D. W. Marquardt, P. M. Robinson, Emanuel Parzen, Julia Abrahams, E. Masry, H. L. Weinert, R. H. Shumway.

Practical Time Series Analysis Using SAS

Practical Time Series Analysis Using SAS PDF Author: Anders Milhoj
Publisher:
ISBN: 9781612901701
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Anders Milhøj's Practical Time Series Analysis Using SAS explains and demonstrates through examples how you can use SAS for time series analysis. It offers modern procedures for forecasting, seasonal adjustments, and decomposition of time series that can be used without involved statistical reasoning. The book teaches, with numerous examples, how to apply these procedures with very simple coding. In addition, it also gives the statistical background for interested readers. Beginning with an introductory chapter that covers the practical handling of time series data in SAS using the TIMESERIES and EXPAND procedures, it goes on to explain forecasting, which is found in the ESM procedure; seasonal adjustment, including trading-day correction using PROC X12; and unobserved component models using the UCM procedure. This book is part of the SAS Press program.

Time Series Analysis and Its Applications

Time Series Analysis and Its Applications PDF Author: Robert H. Shumway
Publisher:
ISBN: 9781475732627
Category :
Languages : en
Pages : 568

Get Book Here

Book Description


Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Get Book Here

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Data Analysis with Open Source Tools

Data Analysis with Open Source Tools PDF Author: Philipp K. Janert
Publisher: "O'Reilly Media, Inc."
ISBN: 1449396658
Category : Computers
Languages : en
Pages : 534

Get Book Here

Book Description
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora

Nonlinear Time Series Analysis

Nonlinear Time Series Analysis PDF Author: Holger Kantz
Publisher: Cambridge University Press
ISBN: 9780521529020
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Applied Statistical Time Series Analysis

Applied Statistical Time Series Analysis PDF Author: Robert H. Shumway
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description


Applied Time Series Analysis

Applied Time Series Analysis PDF Author: Terence C. Mills
Publisher: Academic Press
ISBN: 0128131179
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.

Introduction to Time Series and Forecasting

Introduction to Time Series and Forecasting PDF Author: Peter J. Brockwell
Publisher: Springer Science & Business Media
ISBN: 1475725264
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Introductory Time Series with R

Introductory Time Series with R PDF Author: Paul S.P. Cowpertwait
Publisher: Springer Science & Business Media
ISBN: 0387886982
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.