Author: N. MacDonald
Publisher: Springer Science & Business Media
ISBN: 3642931073
Category : Mathematics
Languages : en
Pages : 122
Book Description
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these differ according to the choice of discrete or distributed lag. The models studied are drawn from the population dynamiCS of single species (logistic growth, the chemostat) and of interacting pairs of species (predation, mutualism), from cell population dynamiCS (haemopoiesis) and from biochemical kinetics (the Goodwin oscillator). The last chapter is devoted to a population model employing difference equations. All these models include non-linear terms.
Time Lags in Biological Models
Author: N. MacDonald
Publisher: Springer Science & Business Media
ISBN: 3642931073
Category : Mathematics
Languages : en
Pages : 122
Book Description
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these differ according to the choice of discrete or distributed lag. The models studied are drawn from the population dynamiCS of single species (logistic growth, the chemostat) and of interacting pairs of species (predation, mutualism), from cell population dynamiCS (haemopoiesis) and from biochemical kinetics (the Goodwin oscillator). The last chapter is devoted to a population model employing difference equations. All these models include non-linear terms.
Publisher: Springer Science & Business Media
ISBN: 3642931073
Category : Mathematics
Languages : en
Pages : 122
Book Description
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these differ according to the choice of discrete or distributed lag. The models studied are drawn from the population dynamiCS of single species (logistic growth, the chemostat) and of interacting pairs of species (predation, mutualism), from cell population dynamiCS (haemopoiesis) and from biochemical kinetics (the Goodwin oscillator). The last chapter is devoted to a population model employing difference equations. All these models include non-linear terms.
Delay Differential Equations and Applications to Biology
Author: Fathalla A. Rihan
Publisher: Springer Nature
ISBN: 9811606269
Category : Mathematics
Languages : en
Pages : 292
Book Description
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
Publisher: Springer Nature
ISBN: 9811606269
Category : Mathematics
Languages : en
Pages : 292
Book Description
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
Recent Trends in Mathematical Modeling and High Performance Computing
Author: Vinai K. Singh
Publisher: Springer Nature
ISBN: 3030682811
Category : Mathematics
Languages : en
Pages : 441
Book Description
This volume explores the connections between mathematical modeling, computational methods, and high performance computing, and how recent developments in these areas can help to solve complex problems in the natural sciences and engineering. The content of the book is based on talks and papers presented at the conference Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST), held at Inderprastha Engineering College in Ghaziabad, India in January 2020. A wide range of both theoretical and applied topics are covered in detail, including the conceptualization of infinity, efficient domain decomposition, high capacity wireless communication, infectious disease modeling, and more. These chapters are organized around the following areas: Partial and ordinary differential equations Optimization and optimal control High performance and scientific computing Stochastic models and statistics Recent Trends in Mathematical Modeling and High Performance Computing will be of interest to researchers in both mathematics and engineering, as well as to practitioners who face complex models and extensive computations.
Publisher: Springer Nature
ISBN: 3030682811
Category : Mathematics
Languages : en
Pages : 441
Book Description
This volume explores the connections between mathematical modeling, computational methods, and high performance computing, and how recent developments in these areas can help to solve complex problems in the natural sciences and engineering. The content of the book is based on talks and papers presented at the conference Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST), held at Inderprastha Engineering College in Ghaziabad, India in January 2020. A wide range of both theoretical and applied topics are covered in detail, including the conceptualization of infinity, efficient domain decomposition, high capacity wireless communication, infectious disease modeling, and more. These chapters are organized around the following areas: Partial and ordinary differential equations Optimization and optimal control High performance and scientific computing Stochastic models and statistics Recent Trends in Mathematical Modeling and High Performance Computing will be of interest to researchers in both mathematics and engineering, as well as to practitioners who face complex models and extensive computations.
Global Dynamical Properties Of Lotka-volterra Systems
Author: Yasuhiro Takeuchi
Publisher: World Scientific
ISBN: 9814499633
Category : Mathematics
Languages : en
Pages : 316
Book Description
Mathematical ecology is a subject which recently attracts attentions of many mathematicians and biologists. One of the most important and fundamental mathematical models in ecology is of Lotka-Volterra type. This book gives global dynamical properties of L-V systems. The properties analyzed are global stability of the equilibria, persistence or permanence of the systems (which ensures the survival of all the biological-species composed of the systems for the long term) and the existence of periodic or chaotic solutions. The special subject of this book is to consider the effects of the systems structure, diffusion of the biological species and time delay on the global dynamical properties of the systems.
Publisher: World Scientific
ISBN: 9814499633
Category : Mathematics
Languages : en
Pages : 316
Book Description
Mathematical ecology is a subject which recently attracts attentions of many mathematicians and biologists. One of the most important and fundamental mathematical models in ecology is of Lotka-Volterra type. This book gives global dynamical properties of L-V systems. The properties analyzed are global stability of the equilibria, persistence or permanence of the systems (which ensures the survival of all the biological-species composed of the systems for the long term) and the existence of periodic or chaotic solutions. The special subject of this book is to consider the effects of the systems structure, diffusion of the biological species and time delay on the global dynamical properties of the systems.
Mathematical Modelling
Author: Murray S. Klamkin
Publisher: SIAM
ISBN: 9781611971767
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Designed for classroom use, this book contains short, self-contained mathematical models of problems in the physical, mathematical, and biological sciences first published in the Classroom Notes section of the SIAM Review from 1975-1985. The problems provide an ideal way to make complex subject matter more accessible to the student through the use of concrete applications. Each section has extensive supplementary references provided by the editor from his years of experience with mathematical modelling.
Publisher: SIAM
ISBN: 9781611971767
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Designed for classroom use, this book contains short, self-contained mathematical models of problems in the physical, mathematical, and biological sciences first published in the Classroom Notes section of the SIAM Review from 1975-1985. The problems provide an ideal way to make complex subject matter more accessible to the student through the use of concrete applications. Each section has extensive supplementary references provided by the editor from his years of experience with mathematical modelling.
Mathematical Biology
Author: James D. Murray
Publisher: Springer Science & Business Media
ISBN: 0387224378
Category : Mathematics
Languages : en
Pages : 551
Book Description
Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.
Publisher: Springer Science & Business Media
ISBN: 0387224378
Category : Mathematics
Languages : en
Pages : 551
Book Description
Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.
Recent Topics in Nonlinear PDE
Author: M. Mimura
Publisher: Elsevier
ISBN: 0080872093
Category : Mathematics
Languages : en
Pages : 249
Book Description
This volume contains papers covering the theory of nonlinear PDEs and the related topics which have been recently developed in Japan.
Publisher: Elsevier
ISBN: 0080872093
Category : Mathematics
Languages : en
Pages : 249
Book Description
This volume contains papers covering the theory of nonlinear PDEs and the related topics which have been recently developed in Japan.
Mathematical Topics in Population Biology, Morphogenesis and Neurosciences
Author: Ei Teramoto
Publisher: Springer Science & Business Media
ISBN: 3642933602
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecology and Population Biology, 2) Mathematical Theory of Developmental Biology and Morphogenesis, 3) Theoretical Neurosciences, and 4) Cell Kinetics and Other Topics. In every session, there were stimulating and active discussions among the participants. We are convinced that the symposium was highly successful in transmitting scientific information across disciplines and in establishing fruitful contacts among the participants. We owe this success to the cooperation of all participants.
Publisher: Springer Science & Business Media
ISBN: 3642933602
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecology and Population Biology, 2) Mathematical Theory of Developmental Biology and Morphogenesis, 3) Theoretical Neurosciences, and 4) Cell Kinetics and Other Topics. In every session, there were stimulating and active discussions among the participants. We are convinced that the symposium was highly successful in transmitting scientific information across disciplines and in establishing fruitful contacts among the participants. We owe this success to the cooperation of all participants.
Games and Dynamics in Economics
Author: Ferenc Szidarovszky
Publisher: Springer Nature
ISBN: 9811536236
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book focuses on the latest advances in nonlinear dynamic modeling in economics and finance, mainly—but not solely—based on the description of strategic interaction by using concepts and methods from dynamic and evolutionary game theory. The respective chapters cover a range of theoretical issues and examples concerning how the qualitative theory of dynamical systems is used to analyze the local and global bifurcations that characterize complex behaviors observed in social systems where heterogeneous and boundedly rational economic agents interact. Nonlinear dynamical systems, represented by difference and differential and functional equations, are extensively used to simulate the behavior of time-evolving economic systems, also in the presence of time lags, discontinuities, and hysteresis phenomena. In addition, some theoretical issues and particular applications are discussed, as well. The contributions gathered here offer an up-to-date review of the latest research in this rapidly developing research area.
Publisher: Springer Nature
ISBN: 9811536236
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book focuses on the latest advances in nonlinear dynamic modeling in economics and finance, mainly—but not solely—based on the description of strategic interaction by using concepts and methods from dynamic and evolutionary game theory. The respective chapters cover a range of theoretical issues and examples concerning how the qualitative theory of dynamical systems is used to analyze the local and global bifurcations that characterize complex behaviors observed in social systems where heterogeneous and boundedly rational economic agents interact. Nonlinear dynamical systems, represented by difference and differential and functional equations, are extensively used to simulate the behavior of time-evolving economic systems, also in the presence of time lags, discontinuities, and hysteresis phenomena. In addition, some theoretical issues and particular applications are discussed, as well. The contributions gathered here offer an up-to-date review of the latest research in this rapidly developing research area.
Mathematical Ecology of Populations and Ecosystems
Author: John Pastor
Publisher: John Wiley & Sons
ISBN: 1444358456
Category : Science
Languages : en
Pages : 358
Book Description
MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Publisher: John Wiley & Sons
ISBN: 1444358456
Category : Science
Languages : en
Pages : 358
Book Description
MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.