Nonparametric Regression Methods for Longitudinal Data Analysis

Nonparametric Regression Methods for Longitudinal Data Analysis PDF Author: Hulin Wu
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.

Essays in Honor of Cheng Hsiao

Essays in Honor of Cheng Hsiao PDF Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468

Get Book Here

Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.

Nonparametric Regression Methods for Longitudinal Data Analysis

Nonparametric Regression Methods for Longitudinal Data Analysis PDF Author: Hulin Wu
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.

Applied Longitudinal Analysis

Applied Longitudinal Analysis PDF Author: Garrett M. Fitzmaurice
Publisher: John Wiley & Sons
ISBN: 9780471214878
Category : Mathematics
Languages : en
Pages : 540

Get Book Here

Book Description
Publisher Description

Time Series

Time Series PDF Author: Ngai Hang Chan
Publisher: John Wiley & Sons
ISBN: 0471461644
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
Elements of Financial Time Series fills a gap in the market in the area of financial time series analysis by giving both conceptual and practical illustrations. Examples and discussions in the later chapters of the book make recent developments in time series more accessible. Examples from finance are maximized as much as possible throughout the book. * Full set of exercises is displayed at the end of each chapter. * First seven chapters cover standard topics in time series at a high-intensity level. * Recent and timely developments in nonstandard time series techniques are illustrated with real finance examples in detail. * Examples are systemically illustrated with S-plus with codes and data available on an associated Web site.

Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering PDF Author: Paul H. Kvam
Publisher: John Wiley & Sons
ISBN: 9780470168691
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Design and Analysis of Experiments, Volume 3

Design and Analysis of Experiments, Volume 3 PDF Author: Klaus Hinkelmann
Publisher: John Wiley & Sons
ISBN: 0470530685
Category : Mathematics
Languages : en
Pages : 598

Get Book Here

Book Description
Provides timely applications, modifications, and extensions of experimental designs for a variety of disciplines Design and Analysis of Experiments, Volume 3: Special Designs and Applications continues building upon the philosophical foundations of experimental design by providing important, modern applications of experimental design to the many fields that utilize them. The book also presents optimal and efficient designs for practice and covers key topics in current statistical research. Featuring contributions from leading researchers and academics, the book demonstrates how the presented concepts are used across various fields from genetics and medicinal and pharmaceutical research to manufacturing, engineering, and national security. Each chapter includes an introduction followed by the historical background as well as in-depth procedures that aid in the construction and analysis of the discussed designs. Topical coverage includes: Genetic cross experiments, microarray experiments, and variety trials Clinical trials, group-sequential designs, and adaptive designs Fractional factorial and search, choice, and optimal designs for generalized linear models Computer experiments with applications to homeland security Robust parameter designs and split-plot type response surface designs Analysis of directional data experiments Throughout the book, illustrative and numerical examples utilize SAS®, JMP®, and R software programs to demonstrate the discussed techniques. Related data sets and software applications are available on the book's related FTP site. Design and Analysis of Experiments, Volume 3 is an ideal textbook for graduate courses in experimental design and also serves as a practical, hands-on reference for statisticians and researchers across a wide array of subject areas, including biological sciences, engineering, medicine, and business.

Analysis of Financial Time Series

Analysis of Financial Time Series PDF Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 0471746185
Category : Business & Economics
Languages : en
Pages : 576

Get Book Here

Book Description
Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.

Applied Life Data Analysis

Applied Life Data Analysis PDF Author: Wayne B. Nelson
Publisher: John Wiley & Sons
ISBN: 9780471644620
Category : Technology & Engineering
Languages : en
Pages : 666

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Many examples drawn from the author’s experience of engineering applications are used to illustrate the theoretical results, which are presented in a cookbook fashion...it provides an excellent practical guide to the analysis of product-life data." –T.M.M. Farley Special Programme of Research in Human Reproduction World Health Organization Geneva, Switzerland Review in Biometrics, September 1983 Now a classic, Applied Life Data Analysis has been widely used by thousands of engineers and industrial statisticians to obtain information from life data on consumer, industrial, and military products. Organized to serve practitioners, this book starts with basic models and simple informative probability plots of life data. Then it progresses through advanced analytical methods, including maximum likelihood fitting of advanced models to life data. All data analysis methods are illustrated with numerous clients' applications from the author's consulting experience.

Constrained Statistical Inference

Constrained Statistical Inference PDF Author: Mervyn J. Silvapulle
Publisher: John Wiley & Sons
ISBN: 1118165632
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description
An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory