Author: David J. Peake
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 232
Book Description
Three-dimensional Interactions and Vortical Flows with Emphasis on High Speeds
Author: David J. Peake
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 232
Book Description
Separated and Vortical Flow in Aircraft Wing Aerodynamics
Author: Ernst Heinrich Hirschel
Publisher: Springer Nature
ISBN: 366261328X
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Fluid mechanical aspects of separated and vortical flow in aircraft wing aerodynamics are treated. The focus is on two wing classes: (1) large aspect-ratio wings and (2) small aspect-ratio delta-type wings. Aerodynamic design issues in general are not dealt with. Discrete numerical simulation methods play a progressively larger role in aircraft design and development. Accordingly, in the introduction to the book the different mathematical models are considered, which underlie the aerodynamic computation methods (panel methods, RANS and scale-resolving methods). Special methods are the Euler methods, which as rather inexpensive methods embrace compressibility effects and also permit to describe lifting-wing flow. The concept of the kinematically active and inactive vorticity content of shear layers gives insight into many flow phenomena, but also, with the second break of symmetry---the first one is due to the Kutta condition---an explanation of lifting-wing flow fields. The prerequisite is an extended definition of separation: “flow-off separation” at sharp trailing edges of class (1) wings and at sharp leading edges of class (2) wings. The vorticity-content concept, with a compatibility condition for flow-off separation at sharp edges, permits to understand the properties of the evolving trailing vortex layer and the resulting pair of trailing vortices of class (1) wings. The concept also shows that Euler methods at sharp delta or strake leading edges of class (2) wings can give reliable results. Three main topics are treated: 1) Basic Principles are considered first: boundary-layer flow, vortex theory, the vorticity content of shear layers, Euler solutions for lifting wings, the Kutta condition in reality and the topology of skin-friction and velocity fields. 2) Unit Problems treat isolated flow phenomena of the two wing classes. Capabilities of panel and Euler methods are investigated. One Unit Problem is the flow past the wing of the NASA Common Research Model. Other Unit Problems concern the lee-side vortex system appearing at the Vortex-Flow Experiment 1 and 2 sharp- and blunt-edged delta configurations, at a delta wing with partly round leading edges, and also at the Blunt Delta Wing at hypersonic speed. 3) Selected Flow Problems of the two wing classes. In short sections practical design problems are discussed. The treatment of flow past fuselages, although desirable, was not possible in the frame of this book.
Publisher: Springer Nature
ISBN: 366261328X
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Fluid mechanical aspects of separated and vortical flow in aircraft wing aerodynamics are treated. The focus is on two wing classes: (1) large aspect-ratio wings and (2) small aspect-ratio delta-type wings. Aerodynamic design issues in general are not dealt with. Discrete numerical simulation methods play a progressively larger role in aircraft design and development. Accordingly, in the introduction to the book the different mathematical models are considered, which underlie the aerodynamic computation methods (panel methods, RANS and scale-resolving methods). Special methods are the Euler methods, which as rather inexpensive methods embrace compressibility effects and also permit to describe lifting-wing flow. The concept of the kinematically active and inactive vorticity content of shear layers gives insight into many flow phenomena, but also, with the second break of symmetry---the first one is due to the Kutta condition---an explanation of lifting-wing flow fields. The prerequisite is an extended definition of separation: “flow-off separation” at sharp trailing edges of class (1) wings and at sharp leading edges of class (2) wings. The vorticity-content concept, with a compatibility condition for flow-off separation at sharp edges, permits to understand the properties of the evolving trailing vortex layer and the resulting pair of trailing vortices of class (1) wings. The concept also shows that Euler methods at sharp delta or strake leading edges of class (2) wings can give reliable results. Three main topics are treated: 1) Basic Principles are considered first: boundary-layer flow, vortex theory, the vorticity content of shear layers, Euler solutions for lifting wings, the Kutta condition in reality and the topology of skin-friction and velocity fields. 2) Unit Problems treat isolated flow phenomena of the two wing classes. Capabilities of panel and Euler methods are investigated. One Unit Problem is the flow past the wing of the NASA Common Research Model. Other Unit Problems concern the lee-side vortex system appearing at the Vortex-Flow Experiment 1 and 2 sharp- and blunt-edged delta configurations, at a delta wing with partly round leading edges, and also at the Blunt Delta Wing at hypersonic speed. 3) Selected Flow Problems of the two wing classes. In short sections practical design problems are discussed. The treatment of flow past fuselages, although desirable, was not possible in the frame of this book.
Studies of Vortex Dominated Flows
Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
ISBN: 1461246784
Category : Science
Languages : en
Pages : 367
Book Description
From the astrophysical scale of a swirling spiral galaxy, through the geophysical scale of a hurricane, down to the subatomic scale of elementary particles, vortical motion and vortex dynamics have played a profound role in our understanding of the physical world. Kuchemann referred to vortex dynamics as "the sinews and muscles of fluid motion. " In order to update our understanding of vortex dominated flows, NASA Langley Research Center and the Institute for Computer Applications in Science and Engineering (ICASE) conducted a workshop during July 9-11, 1985. The subject was broadly divided into five overlapping topics vortex dynamics, vortex breakdown, massive separation, vortex shedding from sharp leading edges and conically separated flows. Some of the experts in each of these areas were invited to provide an overview of the subject. This volume is the proceedings of the workshop and contains the latest, theoretical, numerical, and experimental work in the above-mentioned areas. Leibovich, Widnall, Moore and Sirovich discussed topics on the fundamentals of vortex dynamics, while Keller and Hafez treated the problem of vortex break down phenomena; the contributions of Smith, Davis and LeBalleur were in the area of massive separation and inviscid-viscous interactions, while those of Cheng, Hoeijmakers and Munnan dealt with sharp-leading-edge vortex flows; and Fiddes and Marconi represented the category of conical separated flows.
Publisher: Springer Science & Business Media
ISBN: 1461246784
Category : Science
Languages : en
Pages : 367
Book Description
From the astrophysical scale of a swirling spiral galaxy, through the geophysical scale of a hurricane, down to the subatomic scale of elementary particles, vortical motion and vortex dynamics have played a profound role in our understanding of the physical world. Kuchemann referred to vortex dynamics as "the sinews and muscles of fluid motion. " In order to update our understanding of vortex dominated flows, NASA Langley Research Center and the Institute for Computer Applications in Science and Engineering (ICASE) conducted a workshop during July 9-11, 1985. The subject was broadly divided into five overlapping topics vortex dynamics, vortex breakdown, massive separation, vortex shedding from sharp leading edges and conically separated flows. Some of the experts in each of these areas were invited to provide an overview of the subject. This volume is the proceedings of the workshop and contains the latest, theoretical, numerical, and experimental work in the above-mentioned areas. Leibovich, Widnall, Moore and Sirovich discussed topics on the fundamentals of vortex dynamics, while Keller and Hafez treated the problem of vortex break down phenomena; the contributions of Smith, Davis and LeBalleur were in the area of massive separation and inviscid-viscous interactions, while those of Cheng, Hoeijmakers and Munnan dealt with sharp-leading-edge vortex flows; and Fiddes and Marconi represented the category of conical separated flows.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
Flow visualization and interpretation of visualization data for deflected thrust V/STOL nozzles
Author: Hsiao C. Kao
Publisher:
ISBN:
Category : Flow visualization
Languages : en
Pages : 54
Book Description
Publisher:
ISBN:
Category : Flow visualization
Languages : en
Pages : 54
Book Description
Understanding Aerodynamics
Author: Doug McLean
Publisher: John Wiley & Sons
ISBN: 1119967511
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Much-needed, fresh approach that brings a greater insight into the physical understanding of aerodynamics Based on the author’s decades of industrial experience with Boeing, this book helps students and practicing engineers to gain a greater physical understanding of aerodynamics. Relying on clear physical arguments and examples, Mclean provides a much-needed, fresh approach to this sometimes contentious subject without shying away from addressing "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience. Motivated by the belief that engineering practice is enhanced in the long run by a robust understanding of the basics as well as real cause-and-effect relationships that lie behind the theory, he provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations, and building upon the contrasts provided by wrong explanations to strengthen understanding of the right ones. Provides a refreshing view of aerodynamics that is based on the author’s decades of industrial experience yet is always tied to basic fundamentals. Provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations Offers new insights to some familiar topics, for example, what the Biot-Savart law really means and why it causes so much confusion, what “Reynolds number” and “incompressible flow” really mean, and a real physical explanation for how an airfoil produces lift. Addresses "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience, and omits mathematical details whenever the physical understanding can be conveyed without them.
Publisher: John Wiley & Sons
ISBN: 1119967511
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Much-needed, fresh approach that brings a greater insight into the physical understanding of aerodynamics Based on the author’s decades of industrial experience with Boeing, this book helps students and practicing engineers to gain a greater physical understanding of aerodynamics. Relying on clear physical arguments and examples, Mclean provides a much-needed, fresh approach to this sometimes contentious subject without shying away from addressing "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience. Motivated by the belief that engineering practice is enhanced in the long run by a robust understanding of the basics as well as real cause-and-effect relationships that lie behind the theory, he provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations, and building upon the contrasts provided by wrong explanations to strengthen understanding of the right ones. Provides a refreshing view of aerodynamics that is based on the author’s decades of industrial experience yet is always tied to basic fundamentals. Provides intuitive physical interpretations and explanations, debunking commonly-held misconceptions and misinterpretations Offers new insights to some familiar topics, for example, what the Biot-Savart law really means and why it causes so much confusion, what “Reynolds number” and “incompressible flow” really mean, and a real physical explanation for how an airfoil produces lift. Addresses "real" aerodynamic situations as opposed to the oversimplified ones frequently used for mathematical convenience, and omits mathematical details whenever the physical understanding can be conveyed without them.
Fluid Vortices
Author: Sheldon Green
Publisher: Springer Science & Business Media
ISBN: 940110249X
Category : Technology & Engineering
Languages : en
Pages : 905
Book Description
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.
Publisher: Springer Science & Business Media
ISBN: 940110249X
Category : Technology & Engineering
Languages : en
Pages : 905
Book Description
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.
New Results in Numerical and Experimental Fluid Mechanics
Author: Horst Körner
Publisher: Springer Science & Business Media
ISBN: 3322865738
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
This volume contains the papers of the 10th AG STAB (German Aerospace Aerodynamics Association). In this association all those scientists and engineers from universities, research-establishments and industry are involved, who are doing research and project work in numerical and experimental fluid mechanics and aerodynamics for aerospace and other applications. Many of the contributions are giving first results from the "Luftfahrtforschungsprogramm der Bundesregierung (German Aeronautical Research Program) 1995-1998". Some of the papers report on work sponsored by the Deutsche Forschungsgemeinschaft, DFG, which also was presented at the symposium. The volume gives a broad overview over the ongoing work in this field in Germany.
Publisher: Springer Science & Business Media
ISBN: 3322865738
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
This volume contains the papers of the 10th AG STAB (German Aerospace Aerodynamics Association). In this association all those scientists and engineers from universities, research-establishments and industry are involved, who are doing research and project work in numerical and experimental fluid mechanics and aerodynamics for aerospace and other applications. Many of the contributions are giving first results from the "Luftfahrtforschungsprogramm der Bundesregierung (German Aeronautical Research Program) 1995-1998". Some of the papers report on work sponsored by the Deutsche Forschungsgemeinschaft, DFG, which also was presented at the symposium. The volume gives a broad overview over the ongoing work in this field in Germany.
Modeling Complex Turbulent Flows
Author: Manuel D. Salas
Publisher: Springer Science & Business Media
ISBN: 9401147248
Category : Science
Languages : en
Pages : 385
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Publisher: Springer Science & Business Media
ISBN: 9401147248
Category : Science
Languages : en
Pages : 385
Book Description
Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.
Physics of Separated Flows — Numerical, Experimental, and Theoretical Aspects
Author: Klaus Gersten
Publisher: Springer Science & Business Media
ISBN: 3663139867
Category : Science
Languages : en
Pages : 305
Book Description
This volume contains 37 contributions in which the research work is summarized which has been carried out between 1984 and 1990 in the Priority Research Program "Physik abgeloster Stromungen" of the Deutsche Forschungsgemeinschaft (DFG, German Research Society). The aim of the Priority Research Program was the inten sive research of the whole range of phenomena associated with separated flows. Physi cal models as well as prediction methods had to be developed based on detailed experi mental investigations. It was in accordance with the main concept of the research program that scientists working on problems of separated flows in different technical areas of application participated in this program. The following fields have been represented in the program: aerodynamics of wings and bodies, aerodynamics of auto mobiles, turbomachinery, ship hydrodynamics, hydraulics, internal flows, heat exchan gers, bio-fluid-dynamics, aerodynamics of buildings and structures. In order to concentrate on problems common in all those areas the emphasis of the program was on basic research dealing with generic geometric configurations showing the fundamental physical phenomena of separated flows. The engagement and enthusiasm of all participating scientists are highly appreciated. The program was organized such that all researchers met once a year to report on the progress of their work. Special thanks ought to go to Prof. E. A. Muller (Gottingen), Prof. H. Oertel jun. (Braunschweig), Dr. W. Schmidt (Dornier), Dr. H. -W. Stock (Dornier) and Dr. B. Wagner (Dornier), who had the functions of referees on those annual meetings.
Publisher: Springer Science & Business Media
ISBN: 3663139867
Category : Science
Languages : en
Pages : 305
Book Description
This volume contains 37 contributions in which the research work is summarized which has been carried out between 1984 and 1990 in the Priority Research Program "Physik abgeloster Stromungen" of the Deutsche Forschungsgemeinschaft (DFG, German Research Society). The aim of the Priority Research Program was the inten sive research of the whole range of phenomena associated with separated flows. Physi cal models as well as prediction methods had to be developed based on detailed experi mental investigations. It was in accordance with the main concept of the research program that scientists working on problems of separated flows in different technical areas of application participated in this program. The following fields have been represented in the program: aerodynamics of wings and bodies, aerodynamics of auto mobiles, turbomachinery, ship hydrodynamics, hydraulics, internal flows, heat exchan gers, bio-fluid-dynamics, aerodynamics of buildings and structures. In order to concentrate on problems common in all those areas the emphasis of the program was on basic research dealing with generic geometric configurations showing the fundamental physical phenomena of separated flows. The engagement and enthusiasm of all participating scientists are highly appreciated. The program was organized such that all researchers met once a year to report on the progress of their work. Special thanks ought to go to Prof. E. A. Muller (Gottingen), Prof. H. Oertel jun. (Braunschweig), Dr. W. Schmidt (Dornier), Dr. H. -W. Stock (Dornier) and Dr. B. Wagner (Dornier), who had the functions of referees on those annual meetings.