Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 810
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 810
Book Description
15th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2, Volume 12, Issue 7/8
Author: John B. Wachtman
Publisher: John Wiley & Sons
ISBN: 0470315881
Category : Technology & Engineering
Languages : en
Pages : 682
Book Description
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
Publisher: John Wiley & Sons
ISBN: 0470315881
Category : Technology & Engineering
Languages : en
Pages : 682
Book Description
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
Applied mechanics reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Comprehensive Structural Integrity
Author: Ian Milne
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Toughening Mechanisms in Quasi-Brittle Materials
Author: S.P. Shah
Publisher: Springer Science & Business Media
ISBN: 9401133883
Category : Science
Languages : en
Pages : 590
Book Description
A variety of ceramic materials has been recently shown to exhibit nonlinear stress strain behavior. These materials include transformation-toughened zirconia which undergoes a stress-induced crystallographic transformation in the vicinity of a propagating crack, microcracking ceramics, and ceramic-fiber reinforced ceramic matrices. Since many of these materials are under consideration for structural applications, understanding fracture in these quasi-brittle materials is essential. Portland cement concrete is a relatively brittle material. As a result mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete and fiber reinforced concrete is critically influenced by crack propagation. Crack propagation in concrete is characterized by a fracture process zone, microcracking, and aggregate bridging. Such phenomena give concrete toughening mechanisms, and as a result, the macroscopic response of concrete can be characterized as that of a quasi-brittle material. To design super high performance cement composites, it is essential to understand the complex fracture processes in concrete. A wide range of concern in design involves fracture in rock masses and rock structures. For example, prediction of the extension or initiation of fracture is important in: 1) the design of caverns (such as underground nuclear waste isolation) subjected to earthquake shaking or explosions, 2) the production of geothermal and petroleum energy, and 3) predicting and monitoring earthquakes. Depending upon the grain size and mineralogical composition, rock may also exhibit characteristics of quasi-brittle materials.
Publisher: Springer Science & Business Media
ISBN: 9401133883
Category : Science
Languages : en
Pages : 590
Book Description
A variety of ceramic materials has been recently shown to exhibit nonlinear stress strain behavior. These materials include transformation-toughened zirconia which undergoes a stress-induced crystallographic transformation in the vicinity of a propagating crack, microcracking ceramics, and ceramic-fiber reinforced ceramic matrices. Since many of these materials are under consideration for structural applications, understanding fracture in these quasi-brittle materials is essential. Portland cement concrete is a relatively brittle material. As a result mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete and fiber reinforced concrete is critically influenced by crack propagation. Crack propagation in concrete is characterized by a fracture process zone, microcracking, and aggregate bridging. Such phenomena give concrete toughening mechanisms, and as a result, the macroscopic response of concrete can be characterized as that of a quasi-brittle material. To design super high performance cement composites, it is essential to understand the complex fracture processes in concrete. A wide range of concern in design involves fracture in rock masses and rock structures. For example, prediction of the extension or initiation of fracture is important in: 1) the design of caverns (such as underground nuclear waste isolation) subjected to earthquake shaking or explosions, 2) the production of geothermal and petroleum energy, and 3) predicting and monitoring earthquakes. Depending upon the grain size and mineralogical composition, rock may also exhibit characteristics of quasi-brittle materials.
Intermetallic Matrix Composites
Author: Rahul Mitra
Publisher: Elsevier
ISBN: 0857093576
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
Intermetallic Matrix Composites: Properties and Applications is a comprehensive guide that studies the types and properties of intermetallic matrix composites, including their processing techniques, characterization and the various testing methods associated with these composites. In addition, it presents modeling techniques, their strengthening mechanisms and the important area of failure and repair. Advanced /complex IMCs are then explained, such as Self-healing IMCs and laminated intermetallic composites. The book concludes by delving into the industries that use these materials, including the automotive industry. - Reviews the latest research in intermetallic matrix composites - Contains a focus on properties and applications - Includes contributions from leading experts in the field
Publisher: Elsevier
ISBN: 0857093576
Category : Technology & Engineering
Languages : en
Pages : 488
Book Description
Intermetallic Matrix Composites: Properties and Applications is a comprehensive guide that studies the types and properties of intermetallic matrix composites, including their processing techniques, characterization and the various testing methods associated with these composites. In addition, it presents modeling techniques, their strengthening mechanisms and the important area of failure and repair. Advanced /complex IMCs are then explained, such as Self-healing IMCs and laminated intermetallic composites. The book concludes by delving into the industries that use these materials, including the automotive industry. - Reviews the latest research in intermetallic matrix composites - Contains a focus on properties and applications - Includes contributions from leading experts in the field
Engineered Materials Abstracts
Author:
Publisher:
ISBN:
Category : Ceramic materials
Languages : en
Pages : 658
Book Description
Publisher:
ISBN:
Category : Ceramic materials
Languages : en
Pages : 658
Book Description
Computational Mesomechanics of Composites
Author: Leon L. Mishnaevsky, Jr
Publisher: John Wiley & Sons
ISBN: 9780470513187
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.
Publisher: John Wiley & Sons
ISBN: 9780470513187
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.
Fracture Mechanics of Ceramics
Author: R.C. Bradt
Publisher: Springer Science & Business Media
ISBN: 1461533503
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
These volumes, 9 and 10, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at the Japan Fine Ceramics Center, Nagoya, Japan on July 15, 16, 17, 1991. These proceedings constitute the fifth pair of volumes of a continuing series of conferences. Volumes 1 and 2 were from the 1973 symposium, volumes 3 and 4 from a 1977 symposium, and volumes 5 and 6 from a 1981 symposium all of which were held at The Pennsylvania State University. Volumes 7 and 8 are from the 1985 symposium which was held at the Virginia Polytechnic Institute and State University. The theme ofthis conference, as for the previous four, focused on the mechanical behavior ofceramic materials in terms of the characteristics of cracks, particularly the roles which they assume in the fracture processes and mechanisms. The 82 contributed papers by over 150 authors and co-authors represent the current state of that field. They address many of the theoretical and practical problems ofinterest to those scientists and engineers concerned with brittle fracture.
Publisher: Springer Science & Business Media
ISBN: 1461533503
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
These volumes, 9 and 10, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at the Japan Fine Ceramics Center, Nagoya, Japan on July 15, 16, 17, 1991. These proceedings constitute the fifth pair of volumes of a continuing series of conferences. Volumes 1 and 2 were from the 1973 symposium, volumes 3 and 4 from a 1977 symposium, and volumes 5 and 6 from a 1981 symposium all of which were held at The Pennsylvania State University. Volumes 7 and 8 are from the 1985 symposium which was held at the Virginia Polytechnic Institute and State University. The theme ofthis conference, as for the previous four, focused on the mechanical behavior ofceramic materials in terms of the characteristics of cracks, particularly the roles which they assume in the fracture processes and mechanisms. The 82 contributed papers by over 150 authors and co-authors represent the current state of that field. They address many of the theoretical and practical problems ofinterest to those scientists and engineers concerned with brittle fracture.