Thermodynamics and Pattern Formation in Biology

Thermodynamics and Pattern Formation in Biology PDF Author: Ingolf Lamprecht
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110848406
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
No detailed description available for "Thermodynamics and Pattern Formation in Biology".

Thermodynamic Bases of Biological Processes

Thermodynamic Bases of Biological Processes PDF Author: A. I. Zotin
Publisher: Walter de Gruyter
ISBN: 3110849976
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description


Directions In Condensed Matter Physics: Memorial Volume In Honor Of Shang-keng Ma

Directions In Condensed Matter Physics: Memorial Volume In Honor Of Shang-keng Ma PDF Author: Geoffrey Grinstein
Publisher: World Scientific
ISBN: 9814513601
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.

Pattern formation in biology

Pattern formation in biology PDF Author: Luis Diambra
Publisher: Frontiers Media SA
ISBN: 2832525687
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description


Spatio-Temporal Pattern Formation

Spatio-Temporal Pattern Formation PDF Author: Daniel Walgraef
Publisher: Springer Science & Business Media
ISBN: 1461218500
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
Spatio-temporal patterns appear almost everywhere in nature, and their description and understanding still raise important and basic questions. However, if one looks back 20 or 30 years, definite progress has been made in the modeling of insta bilities, analysis of the dynamics in their vicinity, pattern formation and stability, quantitative experimental and numerical analysis of patterns, and so on. Universal behaviors of complex systems close to instabilities have been determined, leading to the wide interdisciplinarity of a field that is now referred to as nonlinear science or science of complexity, and in which initial concepts of dissipative structures or synergetics are deeply rooted. In pioneering domains related to hydrodynamics or chemical instabilities, the interactions between experimentalists and theoreticians, sometimes on a daily basis, have been a key to progress. Everyone in the field praises the role played by the interactions and permanent feedbacks between ex perimental, numerical, and analytical studies in the achievements obtained during these years. Many aspects of convective patterns in normal fluids, binary mixtures or liquid crystals are now understood and described in this framework. The generic pres ence of defects in extended systems is now well established and has induced new developments in the physics of laser with large Fresnel numbers. Last but not least, almost 40 years after his celebrated paper, Turing structures have finally been ob tained in real-life chemical reactors, triggering anew intense activity in the field of reaction-diffusion systems.

Materials and Thermodynamics

Materials and Thermodynamics PDF Author: Pierre Delhaes
Publisher: John Wiley & Sons
ISBN: 1119427967
Category : Technology & Engineering
Languages : en
Pages : 232

Get Book Here

Book Description
A thermodynamic system is defined according to its environment and its compliance. This book promotes the classification of materials from generalized thermodynamics outside the equilibrium state and not solely according to their chemical origin. The author goes beyond standard classification of materials and extends it to take into account the living, ecological, economic and financial systems in which they exist: all these systems can be classified according to their deviation from an ideal situation of thermodynamic equilibrium. The concepts of dynamic complexity and hierarchy, emphasizing the crucial role played by cycles and rhythms, then become fundamental. Finally, the limitations of the uniqueness of this description that depend on thermodynamic foundations based on the concepts of energy and entropy are discussed in relation to the cognitive sciences.

Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations PDF Author: Ranjit Kumar Upadhyay
Publisher: Chapman & Hall/CRC
ISBN: 9781000334241
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations PDF Author: Ranjit Kumar Upadhyay
Publisher: CRC Press
ISBN: 100033435X
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Periodic Precipitation

Periodic Precipitation PDF Author: H. K. Henisch
Publisher: Elsevier
ISBN: 1483296806
Category : Science
Languages : en
Pages : 137

Get Book Here

Book Description
Containing illustrations, worked examples, graphs and tables, this book deals with periodic precipitation (also known as Liesegang Ring formation) in terms of mathematical models and their logical consequences, and is entirely concerned with microcomputer analysis and software development. Three distinctive periodic precipitation mechanisms are included: binary diffusion-reaction; solubility modulation, and competitive particle growth. The book provides didactic illustrations of a valuable investigational procedure, in the form of hypothetical experimentation by microcomputer. The development of appropriate software is described and the resulting programs are available separately on disk. The software (for IBM compatible microcomputers; 5 1/4 and 3 1/2 inch disks available) will be sold separately by, The Carnation Press, PO Box 101, State College, PA 16804, USA.

Pattern Formation In The Physical And Biological Sciences

Pattern Formation In The Physical And Biological Sciences PDF Author: H. Frederick Nijhout
Publisher: CRC Press
ISBN: 0429972997
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
This Lecture Notes Volume represents the first time any of the summer school lectures have been collected and published on a discrete subject rather than grouping all of a season's lectures together. This volume provides a broad survey of current thought on the problem of pattern formation. Spanning six years of summer school lectures, it includes articles which examine the origin and evolution of spatial patterns in physio-chemical and biological systems from a great diversity of theoretical and mechanistic perspectives. In addition, most of these pieces have been updated by their authors and three articles never previously published have been added.