Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites

Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites PDF Author: Nayandeep Kumar Mahanta
Publisher:
ISBN:
Category : Carbon nanotubes
Languages : en
Pages : 0

Get Book Here

Book Description
Carbon nanostructures, namely carbon nanotubes, nanofibers and graphene, owing to their extremely high thermal conductivities, hold promise for use as fillers in materials required for thermal management of electronics. Efficient thermal characterization holds the key to understanding the heat conduction mechanisms in the particular nanostructures and continued development of materials for novel applications. The present work involves development of dedicated techniques for characterization of the thermal conduction in individual carbon nanostructures and nanocomposites. The thermal flash technique developed for characterizing individual nanostructures provides a simple, accurate and reliable means for measuring thermal conductivity while managing to avoid the issues associated with conventional techniques. The thermal conductivities measured for vapor-grown carbon nanofibers and various graphene nanoplatelets were consistent with theoretical estimates based on the fundamentals of heat conduction in solids. Moreover, the results provide valuable evidence to support existing theories for explaining the differences between the various nanoscale manifestations of graphite. The investigation on isolated nanostructures was followed with the development and characterization of epoxy nanocomposites comprising graphite and graphene as fillers with the overarching goal of preparing composites with a thermal conductivity higher than 40 W/m-K. The thermal conductivities measured for some of the nanocomposites using the dual-mode heat flow meter, a steady-state heat technique developed in this work, were higher than the highest reported value in literature. The presence of large graphite flakes in conjunction with small amounts of graphene to reduce the overall thermal interface resistance were the principal reasons behind the extremely high thermal conductivity of 42.4 ± 4.8 W/m-K (nearly 250 times enhancement) for an epoxy composite with 30 wt% of graphite and 5 wt% of graphene.

Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites

Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites PDF Author: Nayandeep Kumar Mahanta
Publisher:
ISBN:
Category : Carbon nanotubes
Languages : en
Pages : 0

Get Book Here

Book Description
Carbon nanostructures, namely carbon nanotubes, nanofibers and graphene, owing to their extremely high thermal conductivities, hold promise for use as fillers in materials required for thermal management of electronics. Efficient thermal characterization holds the key to understanding the heat conduction mechanisms in the particular nanostructures and continued development of materials for novel applications. The present work involves development of dedicated techniques for characterization of the thermal conduction in individual carbon nanostructures and nanocomposites. The thermal flash technique developed for characterizing individual nanostructures provides a simple, accurate and reliable means for measuring thermal conductivity while managing to avoid the issues associated with conventional techniques. The thermal conductivities measured for vapor-grown carbon nanofibers and various graphene nanoplatelets were consistent with theoretical estimates based on the fundamentals of heat conduction in solids. Moreover, the results provide valuable evidence to support existing theories for explaining the differences between the various nanoscale manifestations of graphite. The investigation on isolated nanostructures was followed with the development and characterization of epoxy nanocomposites comprising graphite and graphene as fillers with the overarching goal of preparing composites with a thermal conductivity higher than 40 W/m-K. The thermal conductivities measured for some of the nanocomposites using the dual-mode heat flow meter, a steady-state heat technique developed in this work, were higher than the highest reported value in literature. The presence of large graphite flakes in conjunction with small amounts of graphene to reduce the overall thermal interface resistance were the principal reasons behind the extremely high thermal conductivity of 42.4 ± 4.8 W/m-K (nearly 250 times enhancement) for an epoxy composite with 30 wt% of graphite and 5 wt% of graphene.

Thermal Transport in Carbon-Based Nanomaterials

Thermal Transport in Carbon-Based Nanomaterials PDF Author: Gang Zhang
Publisher: Elsevier
ISBN: 0323473466
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book Here

Book Description
Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials

Thermal Behaviour and Applications of Carbon-Based Nanomaterials

Thermal Behaviour and Applications of Carbon-Based Nanomaterials PDF Author: Dimitrios V. Papavassiliou
Publisher: Elsevier
ISBN: 0128176822
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book Here

Book Description
Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications explores heat transfer in nanocomposites, discusses techniques predicting and modeling the thermal behavior of carbon nanocomposites at different scales, and methods for engineering applications of nanofluidics and heat transfer. The chapters combine theoretical explanation, experimental methods and computational analysis to show how carbon-based nanomaterials are being used to optimise heat transfer. The applications-focused emphasis of this book makes it a valuable resource for materials scientists and engineers who want to learn more about nanoscale heat transfer. Offers an informed overview of how carbon nanomaterials are currently used for nanoscale heat transfer Discusses the major applications of carbon nanomaterials for heat transfer in a variety of industry sectors Details the major computational methods for the analysis of the thermal properties of carbon nanomaterials

Carbon Nanotubes for a Green Environment

Carbon Nanotubes for a Green Environment PDF Author: Shrikaant Kulkarni
Publisher: CRC Press
ISBN: 1000565211
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
Carbon Nanotubes for a Green Environment: Balancing the Risks and Rewards describes the synthesis, characterization, and unique applications of undoped and doped carbon nanotubes as well as hybrids of them with grapheme or nanocomposites, focusing on green aspects of carbon nanotube applications. The volume shows new approaches used for tapping the potential and promise of key materials in isolation or combined with other materials. The research-oriented chapters highlight a spectrum of applications of carbon nanotubes as novel materials for energy storage as well as for environmental remediation, wastewater treatment, green health care products, and more. Chapters explore the use of carbon nanotubes for remediation methods for wastewater treatment such as by using graphene oxide-carbon nanotube composites and by applying undoped and doped carbon nanotubes for removing contaminates. The book also looks at the application of carbon nanotubes for enhanced oil recovery and for heavy metal separation. Other chapters look at the rheological behavior of carbon nanotubes-based materials and their role in processing for various products, the thermal and electrical transport in carbon nanotubes composites, carbon nanotubes-based composite materials for electromagnetic shielding applications. The biomedical applications of carbon nanotube-based nanomaterials also explored, such as FTIR spectroscopy.

Nano-scale Heat Transfer in Nanostructures

Nano-scale Heat Transfer in Nanostructures PDF Author: Jihong Al-Ghalith
Publisher: Springer
ISBN: 3319738828
Category : Science
Languages : en
Pages : 88

Get Book Here

Book Description
The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Thermal Transport Through Individual Nanostructures and Their Contacts

Thermal Transport Through Individual Nanostructures and Their Contacts PDF Author: Yang Yang
Publisher:
ISBN:
Category : Carbon nanotubes
Languages : en
Pages : 135

Get Book Here

Book Description


Thermal Transport in Novel Three Dimensional Carbon Nanostructures

Thermal Transport in Novel Three Dimensional Carbon Nanostructures PDF Author: Jungkyu Park
Publisher:
ISBN:
Category : Graphene
Languages : en
Pages : 0

Get Book Here

Book Description
Three-dimensional (3D) nanostructures comprised of one-dimensional (1D) and/or two-dimensional (2D) nanomaterials have several advantages over their base nanomaterials. Due to their dimensionally confined structures, for example, 1D carbon nanotubes (CNTs) and 2D graphene exhibit strong direction-dependent thermal transport properties with extremely inefficient cross-plane properties. However, 3D carbon nanostructures such as pillared graphene structures (PGS) are expected to be efficient in both in-plane and cross-plane thermal transport. The aim of this thesis is providing the detailed understanding of thermal transport in 3D carbon nanostructures comprised of CNTs and graphene. Reverse non-equilibrium molecular dynamics simulations were used to show that PGS and CNT networks can have both high in-plane and high cross-plane thermal conductivities comparable to their base nanomaterials, i.e. CNTs and graphene, and also to show that their thermal properties are tunable through altering their architectures. The results indicate that thermal resistances at CNT-graphene junctions result from the combined effect of phonon scattering at the junctions with distorted carbon-carbon bonds and the change in dimensionality of the phonon transport medium as phonons propagate from CNTs (1D) to graphene (2D) and then again to CNT. Moreover, wave packet analysis on SWCNT networks revealed that SWCNT-SWCNT junctions with lager diameter transmit thermal energy more efficiently than the junctions with smaller diameter, and also revealed that SWCNT-SWCNT T-junctions are more efficient in thermal energy transmission than X-junctions. A new experimental method for thermal conductivity measurements in 2D nanosheets was developed. The new method ensures a 1D heat conduction in a 2D sample by creating a spatially uniform temperature profile on the heated side of the sample, and thus improves the accuracy of the measurement in a 2D structure. A MEMS device that can measure the thermal conductivity of a graphene layer using this method is currently being fabricated for the validation of the method.

Thermal Transport Properties of Carbon Nanotubes

Thermal Transport Properties of Carbon Nanotubes PDF Author: Shaun A. Wood
Publisher:
ISBN:
Category : Carbon nanotubes
Languages : en
Pages : 40

Get Book Here

Book Description


Carbon Nanotube-Polymer Composites

Carbon Nanotube-Polymer Composites PDF Author: Dimitrios Tasis
Publisher: Royal Society of Chemistry
ISBN: 1782625828
Category : Technology & Engineering
Languages : en
Pages : 293

Get Book Here

Book Description
Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike.

Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts

Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts PDF Author: Michael Thompson Pettes
Publisher:
ISBN:
Category :
Languages : en
Pages : 278

Get Book Here

Book Description
As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, [kappa], of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low [kappa] in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the [kappa] is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the [kappa] of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the [kappa] temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale point contact formed between a sharp silicon tip and a silicon substrate in an ultra high vacuum (UHV) atomic force microscope (AFM). A contact mechanics model of the interface, combined with a heat transport model considering solid-solid conduction and near-field thermal radiation leads to the conclusion that the thermal resistance of the nanoscale point contact is dominated by solid-solid conduction.