Author: Eric M. Smith
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
The primary objective in any engineering design process has to be the elimination of uncertainties. In thermal design of heat exchangers there are presently many stages in which assumptions in mathematical solution of the design problem are being made. Accumulation of these assumptions may introduce variations in design. The designer needs to understand where these inaccuracies may arise, and strive to eliminate as many sources of error as possible by choosing design configurations that avoid such problems at source. In this exciting text, the author adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written. The first few chapters are intended to provide a development from undergraduate studies regarding the fundamentals of heat exchanger theory and the concepts of direct sizing. Later chapters on transient response of heat exchangers and on the related single-blow method of obtaining experimental results should also interest the practicing engineer. Theory is explained simply, with the intention that readers can develop their own approach to the solution of particular problems. This book is an indispensable reference text for higher level (post-graduate) students and practicing engineers, researchers and academics in the field of heat exchangers. Includes a whole new chapter on exergy and pressure loss Provides in the first few chapters a development from undergraduate studies regarding the fundamentals of heat exchanger theory, and continues in later chapters to discuss issues such as the transient response of heat exchangers and the related single-blow method of obtaining experimental results that are also of interest to the practicing engineer. Adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written Contributes to the development of the direct ‘sizing’ approach in thermal design of the exchanger surface Explains theory simply, with the objective that the reader can develop their own approach to the solution of particular problems
Advances in Thermal Design of Heat Exchangers
Author: Eric M. Smith
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
The primary objective in any engineering design process has to be the elimination of uncertainties. In thermal design of heat exchangers there are presently many stages in which assumptions in mathematical solution of the design problem are being made. Accumulation of these assumptions may introduce variations in design. The designer needs to understand where these inaccuracies may arise, and strive to eliminate as many sources of error as possible by choosing design configurations that avoid such problems at source. In this exciting text, the author adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written. The first few chapters are intended to provide a development from undergraduate studies regarding the fundamentals of heat exchanger theory and the concepts of direct sizing. Later chapters on transient response of heat exchangers and on the related single-blow method of obtaining experimental results should also interest the practicing engineer. Theory is explained simply, with the intention that readers can develop their own approach to the solution of particular problems. This book is an indispensable reference text for higher level (post-graduate) students and practicing engineers, researchers and academics in the field of heat exchangers. Includes a whole new chapter on exergy and pressure loss Provides in the first few chapters a development from undergraduate studies regarding the fundamentals of heat exchanger theory, and continues in later chapters to discuss issues such as the transient response of heat exchangers and the related single-blow method of obtaining experimental results that are also of interest to the practicing engineer. Adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written Contributes to the development of the direct ‘sizing’ approach in thermal design of the exchanger surface Explains theory simply, with the objective that the reader can develop their own approach to the solution of particular problems
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
The primary objective in any engineering design process has to be the elimination of uncertainties. In thermal design of heat exchangers there are presently many stages in which assumptions in mathematical solution of the design problem are being made. Accumulation of these assumptions may introduce variations in design. The designer needs to understand where these inaccuracies may arise, and strive to eliminate as many sources of error as possible by choosing design configurations that avoid such problems at source. In this exciting text, the author adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written. The first few chapters are intended to provide a development from undergraduate studies regarding the fundamentals of heat exchanger theory and the concepts of direct sizing. Later chapters on transient response of heat exchangers and on the related single-blow method of obtaining experimental results should also interest the practicing engineer. Theory is explained simply, with the intention that readers can develop their own approach to the solution of particular problems. This book is an indispensable reference text for higher level (post-graduate) students and practicing engineers, researchers and academics in the field of heat exchangers. Includes a whole new chapter on exergy and pressure loss Provides in the first few chapters a development from undergraduate studies regarding the fundamentals of heat exchanger theory, and continues in later chapters to discuss issues such as the transient response of heat exchangers and the related single-blow method of obtaining experimental results that are also of interest to the practicing engineer. Adopts a numerical approach to the thermal design of heat exchangers, extending the theory of performance evaluation to the point where computer software may be written Contributes to the development of the direct ‘sizing’ approach in thermal design of the exchanger surface Explains theory simply, with the objective that the reader can develop their own approach to the solution of particular problems
Thermal Design of Heat Exchangers: A Numerical Approach
Author: Eric M. Smith
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 432
Book Description
This book is unique in adopting a numerical approach to the thermal design of heat exchangers. The computation of mean temperature difference, with accommodation of longitudinal conduction effects, makes full optimisation of the exchanger core possible. Sets of three partial differential equations for both contra-flow and cross-flow are established, and form the bases from which a range of methods of direct-sizing and stepwise rating may proceed. Optimisation of an exchanger for steady-state operation is achieved by an approach which allows maximum utilisation of the allowable pressure losses. Transient methods are covered, including the Method of Characteristics, and the Single-Blow method of testing is treated. Numerous aspects of low and high temperature design are discussed, and extensive references to the literature are provided. Schematic algorithms are listed to allow students and practitioners to construct their own solutions, and spline-fitting of data is discussed.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 432
Book Description
This book is unique in adopting a numerical approach to the thermal design of heat exchangers. The computation of mean temperature difference, with accommodation of longitudinal conduction effects, makes full optimisation of the exchanger core possible. Sets of three partial differential equations for both contra-flow and cross-flow are established, and form the bases from which a range of methods of direct-sizing and stepwise rating may proceed. Optimisation of an exchanger for steady-state operation is achieved by an approach which allows maximum utilisation of the allowable pressure losses. Transient methods are covered, including the Method of Characteristics, and the Single-Blow method of testing is treated. Numerous aspects of low and high temperature design are discussed, and extensive references to the literature are provided. Schematic algorithms are listed to allow students and practitioners to construct their own solutions, and spline-fitting of data is discussed.
Design and Operation of Heat Exchangers and their Networks
Author: Wilfried Roetzel
Publisher: Academic Press
ISBN: 0128178957
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Design and Operation of heat Exchangers and Their Networks presents a comprehensive and detailed analysis on the thermal design methods for the most common types of heat exchangers, with a focus on their networks, simulation procedures for their operations, and measurement of their thermal performances. The book addresses the fundamental theories and principles of heat transfer performance of heat exchangers and their applications and then applies them to the use of modern computing technology. Topics discussed include cell methods for condensers and evaporators, dispersion models for heat exchangers, experimental methods for the evaluation of heat exchanger performance, and thermal calculation algorithms for multi-stream heat exchangers and heat exchanger networks. - Includes MATLAB codes to illustrate how the technologies and methods discussed can be easily applied and developed - Analyses a range of different models, applications, and case studies in order to reveal more advanced solutions for industrial applications - Maintains a strong focus on the fundamental theories and principles of the heat transfer performance of heat exchangers and their applications for complex flow arrangement
Publisher: Academic Press
ISBN: 0128178957
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Design and Operation of heat Exchangers and Their Networks presents a comprehensive and detailed analysis on the thermal design methods for the most common types of heat exchangers, with a focus on their networks, simulation procedures for their operations, and measurement of their thermal performances. The book addresses the fundamental theories and principles of heat transfer performance of heat exchangers and their applications and then applies them to the use of modern computing technology. Topics discussed include cell methods for condensers and evaporators, dispersion models for heat exchangers, experimental methods for the evaluation of heat exchanger performance, and thermal calculation algorithms for multi-stream heat exchangers and heat exchanger networks. - Includes MATLAB codes to illustrate how the technologies and methods discussed can be easily applied and developed - Analyses a range of different models, applications, and case studies in order to reveal more advanced solutions for industrial applications - Maintains a strong focus on the fundamental theories and principles of the heat transfer performance of heat exchangers and their applications for complex flow arrangement
Heat Exchangers
Author: Sadik Kakaç
Publisher: CRC Press
ISBN: 1420053744
Category : Science
Languages : en
Pages : 512
Book Description
Researchers, practitioners, instructors, and students all welcomed the first edition of Heat Exchangers: Selection, Rating, and Thermal Design for gathering into one place the essence of the information they need-information formerly scattered throughout the literature. While retaining the basic objectives and popular features of the bestselling fi
Publisher: CRC Press
ISBN: 1420053744
Category : Science
Languages : en
Pages : 512
Book Description
Researchers, practitioners, instructors, and students all welcomed the first edition of Heat Exchangers: Selection, Rating, and Thermal Design for gathering into one place the essence of the information they need-information formerly scattered throughout the literature. While retaining the basic objectives and popular features of the bestselling fi
Thermal Design
Author: H. S. Lee
Publisher: John Wiley & Sons
ISBN: 1118004701
Category : Science
Languages : en
Pages : 656
Book Description
Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, Second Edition, is a significantly updated new edition which now includes a chapter on thermoelectrics It covers thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space. The underlying concepts in this book cover the understanding of the physical mechanisms of the thermal devices with the essential formulas and detailed derivations, and also the design of the thermal devices in conjunction with mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. This new edition includes more examples, problems and tutorials, and a solutions manual is available on a companion website.
Publisher: John Wiley & Sons
ISBN: 1118004701
Category : Science
Languages : en
Pages : 656
Book Description
Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, Second Edition, is a significantly updated new edition which now includes a chapter on thermoelectrics It covers thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space. The underlying concepts in this book cover the understanding of the physical mechanisms of the thermal devices with the essential formulas and detailed derivations, and also the design of the thermal devices in conjunction with mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. This new edition includes more examples, problems and tutorials, and a solutions manual is available on a companion website.
Fundamentals of Heat Exchanger Design
Author: Ramesh K. Shah
Publisher: John Wiley & Sons
ISBN: 9780471321712
Category : Technology & Engineering
Languages : en
Pages : 978
Book Description
Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.
Publisher: John Wiley & Sons
ISBN: 9780471321712
Category : Technology & Engineering
Languages : en
Pages : 978
Book Description
Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.
Heat Exchangers
Author: Sadik Kakaç
Publisher: CRC Press
ISBN: 1439849900
Category : Science
Languages : en
Pages : 634
Book Description
Heat exchangers are essential in a wide range of engineering applications, including power plants, automobiles, airplanes, process and chemical industries, and heating, air conditioning and refrigeration systems. Revised and updated with new problem sets and examples, Heat Exchangers: Selection, Rating, and Thermal Design, Third Edition presents a systematic treatment of the various types of heat exchangers, focusing on selection, thermal-hydraulic design, and rating. Topics discussed include: Classification of heat exchangers according to different criteria Basic design methods for sizing and rating of heat exchangers Single-phase forced convection correlations in channels Pressure drop and pumping power for heat exchangers and their piping circuit Design solutions for heat exchangers subject to fouling Double-pipe heat exchanger design methods Correlations for the design of two-phase flow heat exchangers Thermal design methods and processes for shell-and-tube, compact, and gasketed-plate heat exchangers Thermal design of condensers and evaporators This third edition contains two new chapters. Micro/Nano Heat Transfer explores the thermal design fundamentals for microscale heat exchangers and the enhancement heat transfer for applications to heat exchanger design with nanofluids. It also examines single-phase forced convection correlations as well as flow friction factors for microchannel flows for heat transfer and pumping power calculations. Polymer Heat Exchangers introduces an alternative design option for applications hindered by the operating limitations of metallic heat exchangers. The appendices provide the thermophysical properties of various fluids. Each chapter contains examples illustrating thermal design methods and procedures and relevant nomenclature. End-of-chapter problems enable students to test their assimilation of the material.
Publisher: CRC Press
ISBN: 1439849900
Category : Science
Languages : en
Pages : 634
Book Description
Heat exchangers are essential in a wide range of engineering applications, including power plants, automobiles, airplanes, process and chemical industries, and heating, air conditioning and refrigeration systems. Revised and updated with new problem sets and examples, Heat Exchangers: Selection, Rating, and Thermal Design, Third Edition presents a systematic treatment of the various types of heat exchangers, focusing on selection, thermal-hydraulic design, and rating. Topics discussed include: Classification of heat exchangers according to different criteria Basic design methods for sizing and rating of heat exchangers Single-phase forced convection correlations in channels Pressure drop and pumping power for heat exchangers and their piping circuit Design solutions for heat exchangers subject to fouling Double-pipe heat exchanger design methods Correlations for the design of two-phase flow heat exchangers Thermal design methods and processes for shell-and-tube, compact, and gasketed-plate heat exchangers Thermal design of condensers and evaporators This third edition contains two new chapters. Micro/Nano Heat Transfer explores the thermal design fundamentals for microscale heat exchangers and the enhancement heat transfer for applications to heat exchanger design with nanofluids. It also examines single-phase forced convection correlations as well as flow friction factors for microchannel flows for heat transfer and pumping power calculations. Polymer Heat Exchangers introduces an alternative design option for applications hindered by the operating limitations of metallic heat exchangers. The appendices provide the thermophysical properties of various fluids. Each chapter contains examples illustrating thermal design methods and procedures and relevant nomenclature. End-of-chapter problems enable students to test their assimilation of the material.
Heat Exchangers
Author: S. M. Sohel Murshed
Publisher: BoD – Books on Demand
ISBN: 9535130935
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Presenting contributions from renowned experts in the field, this book covers research and development in fundamental areas of heat exchangers, which include: design and theoretical development, experiments, numerical modeling and simulations. This book is intended to be a useful reference source and guide to researchers, postgraduate students, and engineers in the fields of heat exchangers, cooling, and thermal management.
Publisher: BoD – Books on Demand
ISBN: 9535130935
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Presenting contributions from renowned experts in the field, this book covers research and development in fundamental areas of heat exchangers, which include: design and theoretical development, experiments, numerical modeling and simulations. This book is intended to be a useful reference source and guide to researchers, postgraduate students, and engineers in the fields of heat exchangers, cooling, and thermal management.
Heat Transfer Modeling
Author: George Sidebotham
Publisher: Springer
ISBN: 3319145142
Category : Science
Languages : en
Pages : 524
Book Description
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: · Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena · Introduces new techniques as needed to address specific problems, in contrast to traditional texts’ use of a deductive approach, where abstract general principles lead to specific examples · Elucidates readers’ understanding of the "heat transfer takes time" idea—transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications · Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power · Maximizes readers’ insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks · Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
Publisher: Springer
ISBN: 3319145142
Category : Science
Languages : en
Pages : 524
Book Description
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: · Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena · Introduces new techniques as needed to address specific problems, in contrast to traditional texts’ use of a deductive approach, where abstract general principles lead to specific examples · Elucidates readers’ understanding of the "heat transfer takes time" idea—transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications · Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power · Maximizes readers’ insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks · Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples
Heat Transfer Equipment Design
Author: R. K. Shah
Publisher: CRC Press
ISBN: 9780891167297
Category : Science
Languages : en
Pages : 1104
Book Description
Publisher: CRC Press
ISBN: 9780891167297
Category : Science
Languages : en
Pages : 1104
Book Description