Author: Fumitomo Maeda
Publisher: Springer Science & Business Media
ISBN: 3642462480
Category : Mathematics
Languages : en
Pages : 204
Book Description
Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension.
Theory of Symmetric Lattices
Author: Fumitomo Maeda
Publisher: Springer Science & Business Media
ISBN: 3642462480
Category : Mathematics
Languages : en
Pages : 204
Book Description
Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension.
Publisher: Springer Science & Business Media
ISBN: 3642462480
Category : Mathematics
Languages : en
Pages : 204
Book Description
Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension.
Discrete Gauge Theory
Author: Robert Oeckl
Publisher: Imperial College Press
ISBN: 1860947379
Category : Science
Languages : en
Pages : 218
Book Description
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Publisher: Imperial College Press
ISBN: 1860947379
Category : Science
Languages : en
Pages : 218
Book Description
This book provides an introduction to topological quantum field theory as well as discrete gauge theory with quantum groups. In contrast to much of the existing literature, the present approach is at the same time intuitive and mathematically rigorous, making extensive use of suitable diagrammatic methods. It provides a highly unified description of lattice gauge theory, topological quantum field theory and models of quantum (super)gravity. The reader is thus in a unique position to understand the relations between these subjects as well as the underlying groundwork.
Free Lie Algebras
Author: Christophe Reutenauer
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Although Lie polynomials first appeared at the turn of the century, there have been many recent developments especially from the point of view of representation theory. This book covers all aspects, with emphasis on the algebraic and combinatorial point of view as well as representation theory.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Although Lie polynomials first appeared at the turn of the century, there have been many recent developments especially from the point of view of representation theory. This book covers all aspects, with emphasis on the algebraic and combinatorial point of view as well as representation theory.
Symmetry
Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Global Homotopy Theory
Author: Stefan Schwede
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Associahedra, Tamari Lattices and Related Structures
Author: Folkert Müller-Hoissen
Publisher: Springer Science & Business Media
ISBN: 3034804059
Category : Mathematics
Languages : en
Pages : 446
Book Description
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
Publisher: Springer Science & Business Media
ISBN: 3034804059
Category : Mathematics
Languages : en
Pages : 446
Book Description
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
Introduction to Lattice Theory with Computer Science Applications
Author: Vijay K. Garg
Publisher: John Wiley & Sons
ISBN: 1119069734
Category : Computers
Languages : en
Pages : 272
Book Description
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Publisher: John Wiley & Sons
ISBN: 1119069734
Category : Computers
Languages : en
Pages : 272
Book Description
A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.
Lattices and Ordered Sets
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Lattice Gauge Theories And Monte Carlo Simulations
Author: Claudio Rebbi
Publisher: World Scientific
ISBN: 9814590932
Category : Science
Languages : en
Pages : 675
Book Description
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Publisher: World Scientific
ISBN: 9814590932
Category : Science
Languages : en
Pages : 675
Book Description
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Measures And Hilbert Lattices
Author: Gudrun Kalmbach
Publisher: World Scientific
ISBN: 9814531901
Category :
Languages : en
Pages : 261
Book Description
Contents: IntroductionOrthomodular MeasuresGleason's TheoremJordan-Hahn DecompositionOrthofacial Sets of StatesEquational Classes Related to StatesDecomposition of Complete Orthomodular LatticesCharacterization of Dimension LatticesBirkhoff-Von Neumann TheoremCoordinatizationsKakutani-Mackey TheoremKeller's Non-Classical Hilbert Spaces Readership: Mathematician and Physicist who are interested in Hilbert Lattices.
Publisher: World Scientific
ISBN: 9814531901
Category :
Languages : en
Pages : 261
Book Description
Contents: IntroductionOrthomodular MeasuresGleason's TheoremJordan-Hahn DecompositionOrthofacial Sets of StatesEquational Classes Related to StatesDecomposition of Complete Orthomodular LatticesCharacterization of Dimension LatticesBirkhoff-Von Neumann TheoremCoordinatizationsKakutani-Mackey TheoremKeller's Non-Classical Hilbert Spaces Readership: Mathematician and Physicist who are interested in Hilbert Lattices.