Author: Alessio Zaccone
Publisher: Springer Nature
ISBN: 303124706X
Category : Science
Languages : en
Pages : 310
Book Description
This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material. This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science.
Theory of Disordered Solids
Author: Alessio Zaccone
Publisher: Springer Nature
ISBN: 303124706X
Category : Science
Languages : en
Pages : 310
Book Description
This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material. This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science.
Publisher: Springer Nature
ISBN: 303124706X
Category : Science
Languages : en
Pages : 310
Book Description
This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material. This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science.
Solid State Theory
Author: Walter A. Harrison
Publisher: Courier Corporation
ISBN: 0486152235
Category : Science
Languages : en
Pages : 580
Book Description
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
Publisher: Courier Corporation
ISBN: 0486152235
Category : Science
Languages : en
Pages : 580
Book Description
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
Physics of Structurally Disordered Solids
Author: Shashanka Mitra
Publisher: Springer Science & Business Media
ISBN: 146840850X
Category : Science
Languages : en
Pages : 788
Book Description
Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi tions of atoms are fixed into adefinite structure, ex cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of de parture from this fixed structure. The amorphous state almost always shows no long range order. Short range order, up to several neighbors, may often be retained, although averaged considerably around their crystalline values. It is generally believed that the amorphous state is a metastable one with respect to the crystal line ordered state, and the conversion to the crystal line state may or may not be easy depending on the na ture of the material, e. g.
Publisher: Springer Science & Business Media
ISBN: 146840850X
Category : Science
Languages : en
Pages : 788
Book Description
Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi tions of atoms are fixed into adefinite structure, ex cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of de parture from this fixed structure. The amorphous state almost always shows no long range order. Short range order, up to several neighbors, may often be retained, although averaged considerably around their crystalline values. It is generally believed that the amorphous state is a metastable one with respect to the crystal line ordered state, and the conversion to the crystal line state may or may not be easy depending on the na ture of the material, e. g.
A Modern Course in the Quantum Theory of Solids
Author: Fuxiang Han
Publisher: World Scientific
ISBN: 9814417149
Category : Science
Languages : en
Pages : 721
Book Description
This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids." The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.
Publisher: World Scientific
ISBN: 9814417149
Category : Science
Languages : en
Pages : 721
Book Description
This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids." The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.
Introduction to Solid-State Theory
Author: Otfried Madelung
Publisher: Springer Science & Business Media
ISBN: 3642618855
Category : Science
Languages : en
Pages : 501
Book Description
Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.
Publisher: Springer Science & Business Media
ISBN: 3642618855
Category : Science
Languages : en
Pages : 501
Book Description
Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.
Disordered Solids
Author: Baldassare Di Bartolo
Publisher: Springer Science & Business Media
ISBN: 1468454757
Category : Science
Languages : en
Pages : 439
Book Description
This book presents an account of the course "Disordered Solids: Structures and Processes" held in Erice, Italy, from June 15 to 29, 1987. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The objective of this course was to present the advances in physical modelling, mathematical formalism and experimental techniques relevant to the interpretation of the structures of disordered solids and of the physical processes occurring therein. Traditional solid-state physics treats solids as perfect crystals and takes great advantage of their symmetry, by means of such mathematical formalisms as the reciprocal lattice, the Brillouin zone, and the powerful tools of group theory. Even if in reality no solid is a perfect crystal, this theoretical approach has been of great usefulness in describing solids: deviations from perfect order have been treated as perturbations of the ideal model. A new situation arises with truly disordered solids where any vestige of long range order has disappeared. The basic problem is that of describing these systems and gaining a scientific understanding of their physical properties without the mathematical formalism of traditional solid state physics. While some of the old approaches may occasionally remain valid (e. g. chemical bonding approach for amorphous solids), the old ways will not do. Disorder is not a perturbation: with disorder, something basically new may be expected to appear.
Publisher: Springer Science & Business Media
ISBN: 1468454757
Category : Science
Languages : en
Pages : 439
Book Description
This book presents an account of the course "Disordered Solids: Structures and Processes" held in Erice, Italy, from June 15 to 29, 1987. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The objective of this course was to present the advances in physical modelling, mathematical formalism and experimental techniques relevant to the interpretation of the structures of disordered solids and of the physical processes occurring therein. Traditional solid-state physics treats solids as perfect crystals and takes great advantage of their symmetry, by means of such mathematical formalisms as the reciprocal lattice, the Brillouin zone, and the powerful tools of group theory. Even if in reality no solid is a perfect crystal, this theoretical approach has been of great usefulness in describing solids: deviations from perfect order have been treated as perturbations of the ideal model. A new situation arises with truly disordered solids where any vestige of long range order has disappeared. The basic problem is that of describing these systems and gaining a scientific understanding of their physical properties without the mathematical formalism of traditional solid state physics. While some of the old approaches may occasionally remain valid (e. g. chemical bonding approach for amorphous solids), the old ways will not do. Disorder is not a perturbation: with disorder, something basically new may be expected to appear.
Glassy Materials And Disordered Solids: An Introduction To Their Statistical Mechanics (Revised Edition)
Author: Kurt Binder
Publisher: World Scientific Publishing Company
ISBN: 9813107537
Category : Science
Languages : en
Pages : 562
Book Description
This book gives a pedagogical introduction to the physics of amorphous solids and related disordered condensed matter systems. Important concepts from statistical mechanics such as percolation, random walks, fractals and spin glasses are explained. Using these concepts, the common aspects of these systems are emphasized, and the current understanding of the glass transition and the structure of glasses are concisely reviewed. This second edition includes new material on emerging topics in the field of disordered systems such as gels, driven systems, dynamical heterogeneities, growing length scales etc. as well as an update of the literature in this rapidly developing field.
Publisher: World Scientific Publishing Company
ISBN: 9813107537
Category : Science
Languages : en
Pages : 562
Book Description
This book gives a pedagogical introduction to the physics of amorphous solids and related disordered condensed matter systems. Important concepts from statistical mechanics such as percolation, random walks, fractals and spin glasses are explained. Using these concepts, the common aspects of these systems are emphasized, and the current understanding of the glass transition and the structure of glasses are concisely reviewed. This second edition includes new material on emerging topics in the field of disordered systems such as gels, driven systems, dynamical heterogeneities, growing length scales etc. as well as an update of the literature in this rapidly developing field.
Theory of Simple Glasses
Author: Giorgio Parisi
Publisher: Cambridge University Press
ISBN: 1108126103
Category : Science
Languages : en
Pages : 341
Book Description
This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics.
Publisher: Cambridge University Press
ISBN: 1108126103
Category : Science
Languages : en
Pages : 341
Book Description
This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics.
Mesoscopic Phenomena in Solids
Author: B.L. Altshuler
Publisher: Elsevier
ISBN: 0444600418
Category : Science
Languages : en
Pages : 577
Book Description
The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name "mesoscopic physics" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.Most of the chapters in the book are devoted to the development of new ideas in the field. They include reviews of experimental observations of conductance fluctuations and the Aharonov-Bohm oscillations in disordered metals, theoretical and experimental work on low frequency noise in small disordered systems, transmittancy fluctuations through random barriers, and theoretical work on the distribution of fluctuation quantities such as conductance. Two chapters are not connected directly to the mesoscopic fluctuations but deal with small systems. They cover the effects of Coulomb interaction in the tunneling through the small junctions, and experimental results on ballistic transport through a perfect conductor.
Publisher: Elsevier
ISBN: 0444600418
Category : Science
Languages : en
Pages : 577
Book Description
The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name "mesoscopic physics" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.Most of the chapters in the book are devoted to the development of new ideas in the field. They include reviews of experimental observations of conductance fluctuations and the Aharonov-Bohm oscillations in disordered metals, theoretical and experimental work on low frequency noise in small disordered systems, transmittancy fluctuations through random barriers, and theoretical work on the distribution of fluctuation quantities such as conductance. Two chapters are not connected directly to the mesoscopic fluctuations but deal with small systems. They cover the effects of Coulomb interaction in the tunneling through the small junctions, and experimental results on ballistic transport through a perfect conductor.
Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785
Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.