Theory of Algebraic Integers

Theory of Algebraic Integers PDF Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
A translation of a classic work by one of the truly great figures of mathematics.

Theory of Algebraic Integers

Theory of Algebraic Integers PDF Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
A translation of a classic work by one of the truly great figures of mathematics.

The Theory of Algebraic Numbers: Second Edition

The Theory of Algebraic Numbers: Second Edition PDF Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.

Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers PDF Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

The Theory of Algebraic Number Fields

The Theory of Algebraic Number Fields PDF Author: David Hilbert
Publisher: Springer Science & Business Media
ISBN: 3662035456
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem PDF Author: Ian Stewart
Publisher: CRC Press
ISBN: 143986408X
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Galois Module Structure of Algebraic Integers

Galois Module Structure of Algebraic Integers PDF Author: Albrecht Fröhlich
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description


Lectures on the Theory of Algebraic Numbers

Lectures on the Theory of Algebraic Numbers PDF Author: E. T. Hecke
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory PDF Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.

Problems in Algebraic Number Theory

Problems in Algebraic Number Theory PDF Author: M. Ram Murty
Publisher: Springer Science & Business Media
ISBN: 0387269983
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Algebraic Number Theory

Algebraic Number Theory PDF Author: Frazer Jarvis
Publisher: Springer
ISBN: 3319075454
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.