Theory of 2-inner Product Spaces

Theory of 2-inner Product Spaces PDF Author: Yeol Je Cho
Publisher: Nova Publishers
ISBN:
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The purpose of this book is to give systematic and comprehensive presentation of theory of n-metric spaces, linear n-normed spaces and n-inner product spaces (and so 2-metric spaces, linear 2-normed spaces and 2-linner product spaces n=2). Since 1963 and 1965, S. Gahler published two papers entitled "2-metrische Raume und ihr topologische Strukhur" and "Lineare 2-normierte Raume", a number of authors have done considerable works on geometric structures of 2-metric spaces and linear 2-normed spaces, and have applied these spaces to several fields of mathematics in many ways. In 1969, S. Gahler introduced also the concept of n metric spaces in a series of his papers entitled "Untersuchungen uber verallemeinerte n-metriscke Raume 1, II, III", which extend the concept of 2-metric spaces to the general case, and provided many properties of topological and geometrical structures. Recently, A. Misiak introduced the concept of n-inner product spaces and extended many results in 2 inner product spaces,which in turn were introduced and studied by C. Diminnie, S. Gahler and A. White, to n-inner product spaces in his doctoral dissertation. This book contains, in short, the latest results on 2-metric spaces and linear 2-normed spaces, 2-inner product spaces, G-inner product spaces, strict convexity and uniform convexity, orthogonal relations, quadratic sets on modules and n-inner product spaces. It is hoped that this book will be devoted to a stimulation of interest in further exploration and to the possible applications in various other branches of mathematics.

Theory of 2-inner Product Spaces

Theory of 2-inner Product Spaces PDF Author: Yeol Je Cho
Publisher: Nova Publishers
ISBN:
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The purpose of this book is to give systematic and comprehensive presentation of theory of n-metric spaces, linear n-normed spaces and n-inner product spaces (and so 2-metric spaces, linear 2-normed spaces and 2-linner product spaces n=2). Since 1963 and 1965, S. Gahler published two papers entitled "2-metrische Raume und ihr topologische Strukhur" and "Lineare 2-normierte Raume", a number of authors have done considerable works on geometric structures of 2-metric spaces and linear 2-normed spaces, and have applied these spaces to several fields of mathematics in many ways. In 1969, S. Gahler introduced also the concept of n metric spaces in a series of his papers entitled "Untersuchungen uber verallemeinerte n-metriscke Raume 1, II, III", which extend the concept of 2-metric spaces to the general case, and provided many properties of topological and geometrical structures. Recently, A. Misiak introduced the concept of n-inner product spaces and extended many results in 2 inner product spaces,which in turn were introduced and studied by C. Diminnie, S. Gahler and A. White, to n-inner product spaces in his doctoral dissertation. This book contains, in short, the latest results on 2-metric spaces and linear 2-normed spaces, 2-inner product spaces, G-inner product spaces, strict convexity and uniform convexity, orthogonal relations, quadratic sets on modules and n-inner product spaces. It is hoped that this book will be devoted to a stimulation of interest in further exploration and to the possible applications in various other branches of mathematics.

Linear Algebra Done Right

Linear Algebra Done Right PDF Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.

Characterizations of Inner Product Spaces

Characterizations of Inner Product Spaces PDF Author: Amir
Publisher: Birkhäuser
ISBN: 3034854870
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =

Inner Product Structures

Inner Product Structures PDF Author: V.I. Istratescu
Publisher: Springer Science & Business Media
ISBN: 940093713X
Category : Mathematics
Languages : en
Pages : 909

Get Book Here

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Best Approximation in Inner Product Spaces

Best Approximation in Inner Product Spaces PDF Author: Frank R. Deutsch
Publisher: Springer Science & Business Media
ISBN: 1468492985
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This is the first systematic study of best approximation theory in inner product spaces and, in particular, in Hilbert space. Geometric considerations play a prominent role in developing and understanding the theory. The only prerequisites for reading the book is some knowledge of advanced calculus and linear algebra.

Norm Derivatives and Characterizations of Inner Product Spaces

Norm Derivatives and Characterizations of Inner Product Spaces PDF Author: Claudi Alsina
Publisher: World Scientific
ISBN: 981428727X
Category : Mathematics
Languages : en
Pages : 199

Get Book Here

Book Description
1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.

From Vector Spaces to Function Spaces

From Vector Spaces to Function Spaces PDF Author: Yutaka Yamamoto
Publisher: SIAM
ISBN: 1611972302
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
A guide to analytic methods in applied mathematics from the perspective of functional analysis, suitable for scientists, engineers and students.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Locally Convex Spaces over Non-Archimedean Valued Fields

Locally Convex Spaces over Non-Archimedean Valued Fields PDF Author: C. Perez-Garcia
Publisher: Cambridge University Press
ISBN: 9780521192439
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Non-Archimedean functional analysis, where alternative but equally valid number systems such as p-adic numbers are fundamental, is a fast-growing discipline widely used not just within pure mathematics, but also applied in other sciences, including physics, biology and chemistry. This book is the first to provide a comprehensive treatment of non-Archimedean locally convex spaces. The authors provide a clear exposition of the basic theory, together with complete proofs and new results from the latest research. A guide to the many illustrative examples provided, end-of-chapter notes and glossary of terms all make this book easily accessible to beginners at the graduate level, as well as specialists from a variety of disciplines.

Mathematical Analysis and Applications

Mathematical Analysis and Applications PDF Author: Michael Ruzhansky
Publisher: John Wiley & Sons
ISBN: 1119414334
Category : Mathematics
Languages : en
Pages : 1021

Get Book Here

Book Description
An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.