Author: Zohar Yosibash
Publisher: Springer Science & Business Media
ISBN: 146141508X
Category : Mathematics
Languages : en
Pages : 473
Book Description
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.
Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation
Author: Zohar Yosibash
Publisher: Springer Science & Business Media
ISBN: 146141508X
Category : Mathematics
Languages : en
Pages : 473
Book Description
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.
Publisher: Springer Science & Business Media
ISBN: 146141508X
Category : Mathematics
Languages : en
Pages : 473
Book Description
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.
Elliptic Boundary Value Problems in Domains with Point Singularities
Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426
Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426
Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Elliptic Problems in Nonsmooth Domains
Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426
Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426
Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.
Numerical Treatment of Eigenvalue Problems Vol. 5 / Numerische Behandlung von Eigenwertaufgaben Band 5
Author: ALBRECHT
Publisher: Birkhäuser
ISBN: 3034863322
Category : Science
Languages : en
Pages : 248
Book Description
Publisher: Birkhäuser
ISBN: 3034863322
Category : Science
Languages : en
Pages : 248
Book Description
Crack Theory and Edge Singularities
Author: D. V. Kapanadze
Publisher: Springer Science & Business Media
ISBN: 940170323X
Category : Mathematics
Languages : en
Pages : 512
Book Description
Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame's system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.
Publisher: Springer Science & Business Media
ISBN: 940170323X
Category : Mathematics
Languages : en
Pages : 512
Book Description
Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame's system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.
Numerical Treatment of Partial Differential Equations
Author: Christian Grossmann
Publisher: Springer Science & Business Media
ISBN: 3540715843
Category : Mathematics
Languages : en
Pages : 601
Book Description
This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
Publisher: Springer Science & Business Media
ISBN: 3540715843
Category : Mathematics
Languages : en
Pages : 601
Book Description
This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
Adaptive Methods — Algorithms, Theory and Applications
Author: W. Hackbusch
Publisher: Springer Science & Business Media
ISBN: 3663142469
Category : Computers
Languages : en
Pages : 281
Book Description
The GAMM Committee for "Efficient Numerical Methods for Partial Differential Equations" organizes workshops on subjects concerning the algorithmical treat ment of partial differential equations. The topics are discretization methods like the finite element and finite volume method for various types of applications in structural and fluid mechanics. Particular attention is devoted to advanced solu tion techniques. th The series of such workshops was continued in 1993, January 22-24, with the 9 Kiel-Seminar on the special topic "Adaptive Methods Algorithms, Theory and Applications" at the Christian-Albrechts-University of Kiel. The seminar was attended by 76 scientists from 7 countries and 23 lectures were given. The list of topics contained general lectures on adaptivity, special discretization schemes, error estimators, space-time adaptivity, adaptive solvers, multi-grid me thods, wavelets, and parallelization. Special thanks are due to Michael Heisig, who carefully compiled the contribu tions to this volume. November 1993 Wolfgang Hackbusch Gabriel Wittum v Contents Page A. AUGE, G. LUBE, D. WEISS: Galerkin/Least-Squares-FEM and Ani- tropic Mesh Refinement. 1 P. BASTIAN, G. WmUM : Adaptive Multigrid Methods: The UG Concept. 17 R. BEINERT, D. KRONER: Finite Volume Methods with Local Mesh Alignment in 2-D. 38 T. BONK: A New Algorithm for Multi-Dimensional Adaptive Nume- cal Quadrature. 54 F.A. BORNEMANN: Adaptive Solution of One-Dimensional Scalar Conservation Laws with Convex Flux. 69 J. CANU, H. RITZDORF : Adaptive, Block-Structured Multigrid on Local Memory Machines. 84 S. DAHLKE, A. KUNaTH: Biorthogonal Wavelets and Multigrid. 99 B. ERDMANN, R.H.W. HOPPE, R.
Publisher: Springer Science & Business Media
ISBN: 3663142469
Category : Computers
Languages : en
Pages : 281
Book Description
The GAMM Committee for "Efficient Numerical Methods for Partial Differential Equations" organizes workshops on subjects concerning the algorithmical treat ment of partial differential equations. The topics are discretization methods like the finite element and finite volume method for various types of applications in structural and fluid mechanics. Particular attention is devoted to advanced solu tion techniques. th The series of such workshops was continued in 1993, January 22-24, with the 9 Kiel-Seminar on the special topic "Adaptive Methods Algorithms, Theory and Applications" at the Christian-Albrechts-University of Kiel. The seminar was attended by 76 scientists from 7 countries and 23 lectures were given. The list of topics contained general lectures on adaptivity, special discretization schemes, error estimators, space-time adaptivity, adaptive solvers, multi-grid me thods, wavelets, and parallelization. Special thanks are due to Michael Heisig, who carefully compiled the contribu tions to this volume. November 1993 Wolfgang Hackbusch Gabriel Wittum v Contents Page A. AUGE, G. LUBE, D. WEISS: Galerkin/Least-Squares-FEM and Ani- tropic Mesh Refinement. 1 P. BASTIAN, G. WmUM : Adaptive Multigrid Methods: The UG Concept. 17 R. BEINERT, D. KRONER: Finite Volume Methods with Local Mesh Alignment in 2-D. 38 T. BONK: A New Algorithm for Multi-Dimensional Adaptive Nume- cal Quadrature. 54 F.A. BORNEMANN: Adaptive Solution of One-Dimensional Scalar Conservation Laws with Convex Flux. 69 J. CANU, H. RITZDORF : Adaptive, Block-Structured Multigrid on Local Memory Machines. 84 S. DAHLKE, A. KUNaTH: Biorthogonal Wavelets and Multigrid. 99 B. ERDMANN, R.H.W. HOPPE, R.
Numerical Approximation Methods for Elliptic Boundary Value Problems
Author: Olaf Steinbach
Publisher: Springer Science & Business Media
ISBN: 0387688056
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Publisher: Springer Science & Business Media
ISBN: 0387688056
Category : Mathematics
Languages : en
Pages : 392
Book Description
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Singularities and Constructive Methods for Their Treatment
Author: Pierre Grisvard
Publisher: Springer
ISBN: 3540393773
Category : Mathematics
Languages : en
Pages : 356
Book Description
Publisher: Springer
ISBN: 3540393773
Category : Mathematics
Languages : en
Pages : 356
Book Description
Numerical Mathematics and Advanced Applications
Author: F. Brezzi
Publisher: Springer Science & Business Media
ISBN: 8847020891
Category : Mathematics
Languages : en
Pages : 981
Book Description
An invaluable instrument for gaining a wide-ranging perspective on the latest developments in mathematical aspects of scientific computing, discovering new applications and the most recent developments in long-standing applications. Provides an insight into the state of the art of Numerical Mathematics and, more generally, into the field of Advanced Applications.
Publisher: Springer Science & Business Media
ISBN: 8847020891
Category : Mathematics
Languages : en
Pages : 981
Book Description
An invaluable instrument for gaining a wide-ranging perspective on the latest developments in mathematical aspects of scientific computing, discovering new applications and the most recent developments in long-standing applications. Provides an insight into the state of the art of Numerical Mathematics and, more generally, into the field of Advanced Applications.