The Structure of the Cloud-topped Marine Boundary Layer During the Southern Ocean Cloud Experiment

The Structure of the Cloud-topped Marine Boundary Layer During the Southern Ocean Cloud Experiment PDF Author: Paul Brian Krummel
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 152

Get Book Here

Book Description

The Structure of the Cloud-topped Marine Boundary Layer During the Southern Ocean Cloud Experiment

The Structure of the Cloud-topped Marine Boundary Layer During the Southern Ocean Cloud Experiment PDF Author: Paul Brian Krummel
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 152

Get Book Here

Book Description


Coastal Stratocumulus-Topped Boundary Layers and the Role of Cloud-Top Entrainment

Coastal Stratocumulus-Topped Boundary Layers and the Role of Cloud-Top Entrainment PDF Author: Daniel P. Eleuterio
Publisher:
ISBN: 9781423518709
Category : Boundary layer (Meteorology)
Languages : en
Pages : 134

Get Book Here

Book Description
The ability of the U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) (Trademark) to accurately forecast the height and structure of the Marine Boundary Layer (MBL) in the coastal zone is analyzed and compared to surface and aircraft observations from the Dynamics and Evolution of Coastal Stratus (DECS) field study conducted along the central coast of California from June 16 to July 22, 1999. The stratus field was found to have significant mesoscale variability within 100 km of the coast due to interaction between the mean flow and the coastal terrain. This structure is consistent with general hydraulic flow theory and the development of a low-level coastal jet. However, the specific characteristics on any given day were very sensitive to flow direction, inversion height, and synoptic conditions. With some modifications, the model predicted the general evolution of these events with qualitative fidelity, but was slow to dissipate the cloud and frequently produced surface fog versus stratus. A consistent tendency was found in the model's predictions of inversion heights 200-300 meters too low, weak inversion strengths, high integrated liquid water content, and weak buoyancy flux near the cloud top. These observed biases are consistent with underestimating the cloud top entrainment velocity and entrainment fluxes in the modeled boundary layer. An explicit entrainment parameterization was developed to better represent the sub-grid scale processes at cloud top and was tested in the single column and 3D versions of COAMPS. The entrainment parameterization was found to improve the boundary layer height and cloud liquid water content as compared to field observations, but the modeled boundary layer still exhibited a low bias, and the entrainment velocity was higher than is generally expected from field studies for this regime. (2 tables, 53 figures. 80 refs.) ANNOTATION: The Role of Cloud-Top Entrainment in Coastal Stratocumulus-Topped Boundary Layers

Mixed-Phase Clouds

Mixed-Phase Clouds PDF Author: Constantin Andronache
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

The Atmospheric Boundary Layer

The Atmospheric Boundary Layer PDF Author: J. R. Garratt
Publisher: Cambridge University Press
ISBN: 9780521467452
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.

The Atmospheric Radiation Measurement (ARM) Program

The Atmospheric Radiation Measurement (ARM) Program PDF Author: D. D. Turner
Publisher:
ISBN: 9781944970055
Category : Atmospheric radiation
Languages : en
Pages : 0

Get Book Here

Book Description


A Modeling Study of the Cloud-Topped Marine Boundary Layer

A Modeling Study of the Cloud-Topped Marine Boundary Layer PDF Author: Thomas A. Guinn
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 63

Get Book Here

Book Description
A coupled convective-radiative, boundary-layer model of marine stratocumulus clouds is presented. The model, which slightly generalized Lilly's (1968) cloud-topped mixed-layer model, has as dependent variables the cloud-top height, the cloud-base height, mixed-layer equivalent potential temperature and total water mixing ratio, the turbulent fluxes of equivalent potential temperature, total water mixing ratio, and virtual potential temperature, the cloud-top jumps of equivalent potential temperature and total water mixing ratio, the cloud-top temperature, and the net radiative flux divergence at cloud top and in the mixed layer. Keywords: Stratosphere. (EG).

Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity

Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity PDF Author: Robert Pincus
Publisher: Springer
ISBN: 3319772732
Category : Science
Languages : en
Pages : 396

Get Book Here

Book Description
This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The aritcles “Observing Convective Aggregation”, “An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles”, “Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations”, “A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment”, “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”, “Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review”, “Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere”, “Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles”, “Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors”, and “EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation” are available as open access articles under a CC BY 4.0 license at link.springer.com.

A Modeling Case Study of Post-frontal Mixed-phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS

A Modeling Case Study of Post-frontal Mixed-phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS PDF Author: Yishi Hu
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 50

Get Book Here

Book Description
A multi-day period (February 23-26, 2018) of post-frontal shallow convective mixed-phase clouds observed during the shipborne Measurements of Aerosols, Radiation and CloUds over the Southern Ocean (MARCUS) field campaign is studied using the Weather Research and Forecast (WRF) model with the aim of understanding ice production as well as model sensitivity to ice process parameterizations. The Cloud-resolving model Radar SIMulator (CRSIM) is firstly used in this study to convert WRF S-band output into W-band radar observables. Comparisons between the observations and simulations suggest that the model captures the observed synoptic pattern and shallow convective nature of the mixed-phase clouds. The simulated clouds are mostly precipitating and liquid dominated. Interestingly, the control simulation significantly underestimates the ice content and overestimates the supercooled liquid water, which is contrary to the bias common in global climate models. Sensitivity simulations targeted at ice production processes suggest that the rime splintering process is not a primary contributor and that the simulated clouds show negligible sensitivity to cloud droplet number concentrations. Higher number concentrations of ice nuclei do not guarantee more ice production overall. However, the simulated mixed-phase clouds are found to be highly sensitive to the implementation of immersion freezing and condensation/deposition freezing. By increasing immersion freezing of cloud droplets or relaxing thresholds for condensation/deposition freezing, the model significantly improves its performance in producing ice. The key results of this work call for an increase in observations of ice nuclei, especially over the remote Southern Ocean and at relatively high temperatures.

The Physics and Parameterization of Moist Atmospheric Convection

The Physics and Parameterization of Moist Atmospheric Convection PDF Author: R.K. Smith
Publisher: Springer Science & Business Media
ISBN: 9401588287
Category : Science
Languages : en
Pages : 499

Get Book Here

Book Description
An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.

Modeling the Cloud-topped Marine Boundary Layer in Two and Three Dimensions

Modeling the Cloud-topped Marine Boundary Layer in Two and Three Dimensions PDF Author: Anthony S. Stender
Publisher:
ISBN:
Category : Atmospheric nucleation
Languages : en
Pages : 154

Get Book Here

Book Description