The Statistical Physics of Data Assimilation and Machine Learning

The Statistical Physics of Data Assimilation and Machine Learning PDF Author: Henry D. I. Abarbanel
Publisher: Cambridge University Press
ISBN: 1009021702
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.

The Statistical Physics of Data Assimilation and Machine Learning

The Statistical Physics of Data Assimilation and Machine Learning PDF Author: Henry D. I. Abarbanel
Publisher: Cambridge University Press
ISBN: 1009021702
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.

Data Assimilation

Data Assimilation PDF Author: Kody Law
Publisher: Springer
ISBN: 3319203258
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.

Machine Learning with Neural Networks

Machine Learning with Neural Networks PDF Author: Bernhard Mehlig
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262

Get Book Here

Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.

Data Assimilation and Control: Theory and Applications in Life Sciences

Data Assimilation and Control: Theory and Applications in Life Sciences PDF Author: Axel Hutt
Publisher: Frontiers Media SA
ISBN: 2889459853
Category :
Languages : en
Pages : 116

Get Book Here

Book Description
The understanding of complex systems is a key element to predict and control the system’s dynamics. To gain deeper insights into the underlying actions of complex systems today, more and more data of diverse types are analyzed that mirror the systems dynamics, whereas system models are still hard to derive. Data assimilation merges both data and model to an optimal description of complex systems’ dynamics. The present eBook brings together both recent theoretical work in data assimilation and control and demonstrates applications in diverse research fields.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Applications of statistical methods and machine learning in the space sciences

Applications of statistical methods and machine learning in the space sciences PDF Author: Bala Poduval
Publisher: Frontiers Media SA
ISBN: 2832520588
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description


Introduction to Environmental Data Science

Introduction to Environmental Data Science PDF Author: William W. Hsieh
Publisher: Cambridge University Press
ISBN: 1009301802
Category : Science
Languages : en
Pages : 650

Get Book Here

Book Description
Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography, pattern recognition for satellite images from remote sensing, management of agriculture and forests, assessment of climate change, and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics are covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms, and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills and online data sets allow readers to practise analysis of real data.

Data Assimilation

Data Assimilation PDF Author: Geir Evensen
Publisher: Springer Science & Business Media
ISBN: 3540383018
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.

Modeling And Simulation For Collective Dynamics

Modeling And Simulation For Collective Dynamics PDF Author: Weizhu Bao
Publisher: World Scientific
ISBN: 9811266158
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
The thematic program Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications was held at the Institute for Mathematical Sciences at the National University of Singapore, from September 2019 to March 2020. Leading experts presented tutorials and special lectures geared towards the participating graduate students and junior researchers.Readers will find in this significant volume four expanded lecture notes with self-contained tutorials on modeling and simulation for collective dynamics including individual and population approaches for population dynamics in mathematical biology, collective behaviors for Lohe type aggregation models, mean-field particle swarm optimization, and consensus-based optimization and ensemble Kalman inversion for global optimization problems with constraints.This volume serves to inspire graduate students and researchers who will embark into original research work in kinetic models for collective dynamics and their applications.

Data Assimilation: Methods, Algorithms, and Applications

Data Assimilation: Methods, Algorithms, and Applications PDF Author: Mark Asch
Publisher: SIAM
ISBN: 1611974542
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.