Author: Dirk von Dalen
Publisher: Springer Science & Business Media
ISBN: 0857295373
Category : Mathematics
Languages : en
Pages : 531
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
The Selected Correspondence of L.E.J. Brouwer
Author: Dirk von Dalen
Publisher: Springer Science & Business Media
ISBN: 0857295373
Category : Mathematics
Languages : en
Pages : 531
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
Publisher: Springer Science & Business Media
ISBN: 0857295373
Category : Mathematics
Languages : en
Pages : 531
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
The Selected Correspondence of L.E.J. Brouwer
Author: Dirk von Dalen
Publisher: Springer
ISBN: 9780857295279
Category : Mathematics
Languages : en
Pages : 532
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
Publisher: Springer
ISBN: 9780857295279
Category : Mathematics
Languages : en
Pages : 532
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
The Selected Correspondence of L.E.J. Brouwer
Author: Dirk von Dalen
Publisher: Springer
ISBN: 9781447126911
Category : Mathematics
Languages : en
Pages : 532
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
Publisher: Springer
ISBN: 9781447126911
Category : Mathematics
Languages : en
Pages : 532
Book Description
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer’s biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincaré, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
L.E.J. Brouwer – Topologist, Intuitionist, Philosopher
Author: Dirk van Dalen
Publisher: Springer Science & Business Media
ISBN: 1447146166
Category : Mathematics
Languages : en
Pages : 877
Book Description
Dirk van Dalen’s biography studies the fascinating life of the famous Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. Brouwer belonged to a special class of genius; complex and often controversial and gifted with a deep intuition, he had an unparalleled access to the secrets and intricacies of mathematics. Most mathematicians remember L.E.J. Brouwer from his scientific breakthroughs in the young subject of topology and for the famous Brouwer fixed point theorem. Brouwer’s main interest, however, was in the foundation of mathematics which led him to introduce, and then consolidate, constructive methods under the name ‘intuitionism’. This made him one of the main protagonists in the ‘foundation crisis’ of mathematics. As a confirmed internationalist, he also got entangled in the interbellum struggle for the ending of the boycott of German and Austrian scientists. This time during the twentieth century was turbulent; nationalist resentment and friction between formalism and intuitionism led to the Mathematische Annalen conflict ('The war of the frogs and the mice'). It was here that Brouwer played a pivotal role. The present biography is an updated revision of the earlier two volume biography in one single book. It appeals to mathematicians and anybody interested in the history of mathematics in the first half of the twentieth century.
Publisher: Springer Science & Business Media
ISBN: 1447146166
Category : Mathematics
Languages : en
Pages : 877
Book Description
Dirk van Dalen’s biography studies the fascinating life of the famous Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. Brouwer belonged to a special class of genius; complex and often controversial and gifted with a deep intuition, he had an unparalleled access to the secrets and intricacies of mathematics. Most mathematicians remember L.E.J. Brouwer from his scientific breakthroughs in the young subject of topology and for the famous Brouwer fixed point theorem. Brouwer’s main interest, however, was in the foundation of mathematics which led him to introduce, and then consolidate, constructive methods under the name ‘intuitionism’. This made him one of the main protagonists in the ‘foundation crisis’ of mathematics. As a confirmed internationalist, he also got entangled in the interbellum struggle for the ending of the boycott of German and Austrian scientists. This time during the twentieth century was turbulent; nationalist resentment and friction between formalism and intuitionism led to the Mathematische Annalen conflict ('The war of the frogs and the mice'). It was here that Brouwer played a pivotal role. The present biography is an updated revision of the earlier two volume biography in one single book. It appeals to mathematicians and anybody interested in the history of mathematics in the first half of the twentieth century.
Handbook of the History and Philosophy of Mathematical Practice
Author: Bharath Sriraman
Publisher: Springer Nature
ISBN: 3031408462
Category :
Languages : en
Pages : 3221
Book Description
Publisher: Springer Nature
ISBN: 3031408462
Category :
Languages : en
Pages : 3221
Book Description
Constructivity and Computability in Historical and Philosophical Perspective
Author: Jacques Dubucs
Publisher: Springer
ISBN: 9401792178
Category : Philosophy
Languages : en
Pages : 223
Book Description
Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the developments following Turing’s ground-breaking linkage of computation and the machine, the resulting birth of complexity theory, the innovations of Kolmogorov complexity and resolving the dissonances between proof theoretical semantics and canonical proof feasibility. Finally, it explores one of the most fundamental questions concerning the interface between constructivity and computability: whether the theory of recursive functions is needed for a rigorous development of constructive mathematics. This volume contributes to the unity of science by overcoming disunities rather than offering an overarching framework. It posits that computability’s adoption of a classical, ontological point of view kept these imperatives separated. In studying the relationship between the two, it is a vital step forward in overcoming the disagreements and misunderstandings which stand in the way of a unifying view of logic.
Publisher: Springer
ISBN: 9401792178
Category : Philosophy
Languages : en
Pages : 223
Book Description
Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the developments following Turing’s ground-breaking linkage of computation and the machine, the resulting birth of complexity theory, the innovations of Kolmogorov complexity and resolving the dissonances between proof theoretical semantics and canonical proof feasibility. Finally, it explores one of the most fundamental questions concerning the interface between constructivity and computability: whether the theory of recursive functions is needed for a rigorous development of constructive mathematics. This volume contributes to the unity of science by overcoming disunities rather than offering an overarching framework. It posits that computability’s adoption of a classical, ontological point of view kept these imperatives separated. In studying the relationship between the two, it is a vital step forward in overcoming the disagreements and misunderstandings which stand in the way of a unifying view of logic.
Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer
Author: Mark van Atten
Publisher: Springer
ISBN: 3319100319
Category : Philosophy
Languages : en
Pages : 336
Book Description
This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of that project, and then evaluates it, with an emphasis on the second stage. The book is organised around Gödel's use of Leibniz, Husserl and Brouwer. Far from considering past philosophers irrelevant to actual systematic concerns, Gödel embraced the use of historical authors to frame his own philosophical perspective. The philosophies of Leibniz and Husserl define his project, while Brouwer's intuitionism is its principal foil: the close affinities between phenomenology and intuitionism set the bar for Gödel's attempt to go far beyond intuitionism. The four central essays are `Monads and sets', `On the philosophical development of Kurt Gödel', `Gödel and intuitionism', and `Construction and constitution in mathematics'. The first analyses and criticises Gödel's attempt to justify, by an argument from analogy with the monadology, the reflection principle in set theory. It also provides further support for Gödel's idea that the monadology needs to be reconstructed phenomenologically, by showing that the unsupplemented monadology is not able to found mathematics directly. The second studies Gödel's reading of Husserl, its relation to Leibniz' monadology, and its influence on his publishe d writings. The third discusses how on various occasions Brouwer's intuitionism actually inspired Gödel's work, in particular the Dialectica Interpretation. The fourth addresses the question whether classical mathematics admits of the phenomenological foundation that Gödel envisaged, and concludes that it does not. The remaining essays provide further context. The essays collected here were written and published over the last decade. Notes have been added to record further thoughts, changes of mind, connections between the essays, and updates of references.
Publisher: Springer
ISBN: 3319100319
Category : Philosophy
Languages : en
Pages : 336
Book Description
This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of that project, and then evaluates it, with an emphasis on the second stage. The book is organised around Gödel's use of Leibniz, Husserl and Brouwer. Far from considering past philosophers irrelevant to actual systematic concerns, Gödel embraced the use of historical authors to frame his own philosophical perspective. The philosophies of Leibniz and Husserl define his project, while Brouwer's intuitionism is its principal foil: the close affinities between phenomenology and intuitionism set the bar for Gödel's attempt to go far beyond intuitionism. The four central essays are `Monads and sets', `On the philosophical development of Kurt Gödel', `Gödel and intuitionism', and `Construction and constitution in mathematics'. The first analyses and criticises Gödel's attempt to justify, by an argument from analogy with the monadology, the reflection principle in set theory. It also provides further support for Gödel's idea that the monadology needs to be reconstructed phenomenologically, by showing that the unsupplemented monadology is not able to found mathematics directly. The second studies Gödel's reading of Husserl, its relation to Leibniz' monadology, and its influence on his publishe d writings. The third discusses how on various occasions Brouwer's intuitionism actually inspired Gödel's work, in particular the Dialectica Interpretation. The fourth addresses the question whether classical mathematics admits of the phenomenological foundation that Gödel envisaged, and concludes that it does not. The remaining essays provide further context. The essays collected here were written and published over the last decade. Notes have been added to record further thoughts, changes of mind, connections between the essays, and updates of references.
The Logical Writings of Karl Popper
Author: David Binder
Publisher: Springer Nature
ISBN: 3030949265
Category : Philosophy
Languages : en
Pages : 552
Book Description
This open access book is the first ever collection of Karl Popper's writings on deductive logic. Karl R. Popper (1902-1994) was one of the most influential philosophers of the 20th century. His philosophy of science ("falsificationism") and his social and political philosophy ("open society") have been widely discussed way beyond academic philosophy. What is not so well known is that Popper also produced a considerable work on the foundations of deductive logic, most of it published at the end of the 1940s as articles at scattered places. This little-known work deserves to be known better, as it is highly significant for modern proof-theoretic semantics. This collection assembles Popper's published writings on deductive logic in a single volume, together with all reviews of these papers. It also contains a large amount of unpublished material from the Popper Archives, including Popper's correspondence related to deductive logic and manuscripts that were (almost) finished, but did not reach the publication stage. All of these items are critically edited with additional comments by the editors. A general introduction puts Popper's work into the context of current discussions on the foundations of logic. This book should be of interest to logicians, philosophers, and anybody concerned with Popper's work.
Publisher: Springer Nature
ISBN: 3030949265
Category : Philosophy
Languages : en
Pages : 552
Book Description
This open access book is the first ever collection of Karl Popper's writings on deductive logic. Karl R. Popper (1902-1994) was one of the most influential philosophers of the 20th century. His philosophy of science ("falsificationism") and his social and political philosophy ("open society") have been widely discussed way beyond academic philosophy. What is not so well known is that Popper also produced a considerable work on the foundations of deductive logic, most of it published at the end of the 1940s as articles at scattered places. This little-known work deserves to be known better, as it is highly significant for modern proof-theoretic semantics. This collection assembles Popper's published writings on deductive logic in a single volume, together with all reviews of these papers. It also contains a large amount of unpublished material from the Popper Archives, including Popper's correspondence related to deductive logic and manuscripts that were (almost) finished, but did not reach the publication stage. All of these items are critically edited with additional comments by the editors. A general introduction puts Popper's work into the context of current discussions on the foundations of logic. This book should be of interest to logicians, philosophers, and anybody concerned with Popper's work.
Gentzen's Centenary
Author: Reinhard Kahle
Publisher: Springer
ISBN: 331910103X
Category : Mathematics
Languages : en
Pages : 563
Book Description
Gerhard Gentzen has been described as logic’s lost genius, whom Gödel called a better logician than himself. This work comprises articles by leading proof theorists, attesting to Gentzen’s enduring legacy to mathematical logic and beyond. The contributions range from philosophical reflections and re-evaluations of Gentzen’s original consistency proofs to the most recent developments in proof theory. Gentzen founded modern proof theory. His sequent calculus and natural deduction system beautifully explain the deep symmetries of logic. They underlie modern developments in computer science such as automated theorem proving and type theory.
Publisher: Springer
ISBN: 331910103X
Category : Mathematics
Languages : en
Pages : 563
Book Description
Gerhard Gentzen has been described as logic’s lost genius, whom Gödel called a better logician than himself. This work comprises articles by leading proof theorists, attesting to Gentzen’s enduring legacy to mathematical logic and beyond. The contributions range from philosophical reflections and re-evaluations of Gentzen’s original consistency proofs to the most recent developments in proof theory. Gentzen founded modern proof theory. His sequent calculus and natural deduction system beautifully explain the deep symmetries of logic. They underlie modern developments in computer science such as automated theorem proving and type theory.
Mathematical Communities in the Reconstruction After the Great War 1918–1928
Author: Laurent Mazliak
Publisher: Springer Nature
ISBN: 3030616835
Category : Science
Languages : en
Pages : 373
Book Description
This book is a consequence of the international meeting organized in Marseilles in November 2018 devoted to the aftermath of the Great War for mathematical communities. It features selected original research presented at the meeting offering a new perspective on a period, the 1920s, not extensively considered by historiography. After 1918, new countries were created, and borders of several others were modified. Territories were annexed while some countries lost entire regions. These territorial changes bear witness to the massive and varied upheavals with which European societies were confronted in the aftermath of the Great War. The reconfiguration of political Europe was accompanied by new alliances and a redistribution of trade – commercial, intellectual, artistic, military, and so on – which largely shaped international life during the interwar period. These changes also had an enormous impact on scientific life, not only in practice, but also in its organization and communication strategies. The mathematical sciences, which from the late 19th century to the 1920s experienced a deep disciplinary evolution, were thus facing a double movement, internal and external, which led to a sustainable restructuring of research and teaching. Concomitantly, various areas such as topology, functional analysis, abstract algebra, logic or probability, among others, experienced exceptional development. This was accompanied by an explosion of new international or national associations of mathematicians with for instance the founding, in 1918, of the International Mathematical Union and the controversial creation of the International Research Council. Therefore, the central idea for the articulation of the various chapters of the book is to present case studies illustrating how in the aftermath of the war, many mathematicians had to organize their personal trajectories taking into account the evolution of the political, social and scientific environment which had taken place at the end of the conflict.
Publisher: Springer Nature
ISBN: 3030616835
Category : Science
Languages : en
Pages : 373
Book Description
This book is a consequence of the international meeting organized in Marseilles in November 2018 devoted to the aftermath of the Great War for mathematical communities. It features selected original research presented at the meeting offering a new perspective on a period, the 1920s, not extensively considered by historiography. After 1918, new countries were created, and borders of several others were modified. Territories were annexed while some countries lost entire regions. These territorial changes bear witness to the massive and varied upheavals with which European societies were confronted in the aftermath of the Great War. The reconfiguration of political Europe was accompanied by new alliances and a redistribution of trade – commercial, intellectual, artistic, military, and so on – which largely shaped international life during the interwar period. These changes also had an enormous impact on scientific life, not only in practice, but also in its organization and communication strategies. The mathematical sciences, which from the late 19th century to the 1920s experienced a deep disciplinary evolution, were thus facing a double movement, internal and external, which led to a sustainable restructuring of research and teaching. Concomitantly, various areas such as topology, functional analysis, abstract algebra, logic or probability, among others, experienced exceptional development. This was accompanied by an explosion of new international or national associations of mathematicians with for instance the founding, in 1918, of the International Mathematical Union and the controversial creation of the International Research Council. Therefore, the central idea for the articulation of the various chapters of the book is to present case studies illustrating how in the aftermath of the war, many mathematicians had to organize their personal trajectories taking into account the evolution of the political, social and scientific environment which had taken place at the end of the conflict.