Author: Alexander S. Blum
Publisher: Springer Nature
ISBN: 3030507548
Category : Mathematics
Languages : en
Pages : 410
Book Description
This contributed volume explores the renaissance of general relativity after World War II, when it transformed from a marginal theory into a cornerstone of modern physics. Chapters explore key historical processes related to the theory of general relativity, in addition to presenting a thorough treatment of the relevant science behind these episodes. A broad historiographical framework is introduced first, thus providing the broad context in which the given computational approaches and case studies occurred. Written by an international and interdisciplinary group of expert authors, these chapters will bring readers to a more complete understanding of Einstein’s theory. Specific topics include: Social and citation networks The Fock-Infeld dispute Wheeler’s turn to gravitation theory The position of general relativity in theories of fundamental interactions The pursuit of a quantum theory of gravity The emergence of dark matter in relation to cosmological models Institutional frameworks for gravitational wave search in Europe The Renaissance of General Relativity in Context is ideal for historians, philosophers, and sociologists of science. Students and researchers in physics will also be interested in the topics explored.
The Renaissance of General Relativity in Context
Author: Alexander S. Blum
Publisher: Springer Nature
ISBN: 3030507548
Category : Mathematics
Languages : en
Pages : 410
Book Description
This contributed volume explores the renaissance of general relativity after World War II, when it transformed from a marginal theory into a cornerstone of modern physics. Chapters explore key historical processes related to the theory of general relativity, in addition to presenting a thorough treatment of the relevant science behind these episodes. A broad historiographical framework is introduced first, thus providing the broad context in which the given computational approaches and case studies occurred. Written by an international and interdisciplinary group of expert authors, these chapters will bring readers to a more complete understanding of Einstein’s theory. Specific topics include: Social and citation networks The Fock-Infeld dispute Wheeler’s turn to gravitation theory The position of general relativity in theories of fundamental interactions The pursuit of a quantum theory of gravity The emergence of dark matter in relation to cosmological models Institutional frameworks for gravitational wave search in Europe The Renaissance of General Relativity in Context is ideal for historians, philosophers, and sociologists of science. Students and researchers in physics will also be interested in the topics explored.
Publisher: Springer Nature
ISBN: 3030507548
Category : Mathematics
Languages : en
Pages : 410
Book Description
This contributed volume explores the renaissance of general relativity after World War II, when it transformed from a marginal theory into a cornerstone of modern physics. Chapters explore key historical processes related to the theory of general relativity, in addition to presenting a thorough treatment of the relevant science behind these episodes. A broad historiographical framework is introduced first, thus providing the broad context in which the given computational approaches and case studies occurred. Written by an international and interdisciplinary group of expert authors, these chapters will bring readers to a more complete understanding of Einstein’s theory. Specific topics include: Social and citation networks The Fock-Infeld dispute Wheeler’s turn to gravitation theory The position of general relativity in theories of fundamental interactions The pursuit of a quantum theory of gravity The emergence of dark matter in relation to cosmological models Institutional frameworks for gravitational wave search in Europe The Renaissance of General Relativity in Context is ideal for historians, philosophers, and sociologists of science. Students and researchers in physics will also be interested in the topics explored.
Thinking About Space and Time
Author: Claus Beisbart
Publisher: Springer Nature
ISBN: 3030477827
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume will provide readers with a more complete understanding of early applications of general relativity (e.g., to cosmology) and of related philosophical issues. Because the chapters are often cross-disciplinary, they cover a wide variety of topics related to the general theory of relativity. These include: Heuristics used in the discovery of general relativity Mach's Principle The structure of Einstein's theory Cosmology and the Einstein world Stability of cosmological models The metaphysical nature of spacetime The relationship between spacetime and dynamics The Geodesic Principle Symmetries Thinking About Space and Time will be a valuable resource for historians of science and philosophers who seek a deeper knowledge of the (early and later) uses of general relativity, as well as for physicists and mathematicians interested in exploring the wider historical and philosophical context of Einstein's theory.
Publisher: Springer Nature
ISBN: 3030477827
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume will provide readers with a more complete understanding of early applications of general relativity (e.g., to cosmology) and of related philosophical issues. Because the chapters are often cross-disciplinary, they cover a wide variety of topics related to the general theory of relativity. These include: Heuristics used in the discovery of general relativity Mach's Principle The structure of Einstein's theory Cosmology and the Einstein world Stability of cosmological models The metaphysical nature of spacetime The relationship between spacetime and dynamics The Geodesic Principle Symmetries Thinking About Space and Time will be a valuable resource for historians of science and philosophers who seek a deeper knowledge of the (early and later) uses of general relativity, as well as for physicists and mathematicians interested in exploring the wider historical and philosophical context of Einstein's theory.
Mass and Motion in General Relativity
Author: Luc Blanchet
Publisher: Springer Science & Business Media
ISBN: 9048130158
Category : Science
Languages : en
Pages : 634
Book Description
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
Publisher: Springer Science & Business Media
ISBN: 9048130158
Category : Science
Languages : en
Pages : 634
Book Description
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.
The Theoretical Significance of Experimental Relativity
Author: Robert Henry Dicke
Publisher:
ISBN:
Category : Relativity (Physics)
Languages : en
Pages : 153
Book Description
Publisher:
ISBN:
Category : Relativity (Physics)
Languages : en
Pages : 153
Book Description
The Einsteinian Revolution
Author: Jürgen Renn
Publisher: Princeton University Press
ISBN: 0691168768
Category : Philosophy
Languages : en
Pages : 272
Book Description
How the Einsteinian revolution can be understood as the result of a long-term evolution of science The revolution that emerged from Albert Einstein’s work in the early twentieth century transformed our understanding of space, time, motion, gravity, matter, and radiation. Beginning with Einstein’s miracle year of 1905 and continuing through his development of the theory of general relativity, Einstein spurred a revolution that continues to reverberate in modern-day physics. In The Einsteinian Revolution, Hanoch Gutfreund and Jürgen Renn trace the century-long transformation of classical physics and argue that the revolution begun by Einstein was in fact the result of a long-term evolution. Describing the origins and context of Einstein’s innovative research, Gutfreund and Renn work to dispel the popular myth of Einstein as a lone genius who brought about a revolution in physics through the power of his own pure thought. We can only understand the birth of modern physics, they say, if we understand the long history of the evolution of knowledge. Gutfreund and Renn outline the essential structures of the knowledge system of classical physics on which Einstein drew. Examining Einstein’s discoveries from 1905 onward, they describe the process by which new concepts arose and the basis of modern physics emerged. These transformations continued, eventually resulting in the establishment of quantum physics and general relativity as the two major conceptual frameworks of modern physics—and its two unreconciled theoretical approaches. Gutfreund and Renn note that Einstein was dissatisfied with this conceptual dichotomy and began a search for a unified understanding of physics—a quest that continued for the rest of his life.
Publisher: Princeton University Press
ISBN: 0691168768
Category : Philosophy
Languages : en
Pages : 272
Book Description
How the Einsteinian revolution can be understood as the result of a long-term evolution of science The revolution that emerged from Albert Einstein’s work in the early twentieth century transformed our understanding of space, time, motion, gravity, matter, and radiation. Beginning with Einstein’s miracle year of 1905 and continuing through his development of the theory of general relativity, Einstein spurred a revolution that continues to reverberate in modern-day physics. In The Einsteinian Revolution, Hanoch Gutfreund and Jürgen Renn trace the century-long transformation of classical physics and argue that the revolution begun by Einstein was in fact the result of a long-term evolution. Describing the origins and context of Einstein’s innovative research, Gutfreund and Renn work to dispel the popular myth of Einstein as a lone genius who brought about a revolution in physics through the power of his own pure thought. We can only understand the birth of modern physics, they say, if we understand the long history of the evolution of knowledge. Gutfreund and Renn outline the essential structures of the knowledge system of classical physics on which Einstein drew. Examining Einstein’s discoveries from 1905 onward, they describe the process by which new concepts arose and the basis of modern physics emerged. These transformations continued, eventually resulting in the establishment of quantum physics and general relativity as the two major conceptual frameworks of modern physics—and its two unreconciled theoretical approaches. Gutfreund and Renn note that Einstein was dissatisfied with this conceptual dichotomy and began a search for a unified understanding of physics—a quest that continued for the rest of his life.
Foundations of General Relativity
Author: Klaas Landsman
Publisher: Radboud University Press
ISBN: 9083178927
Category : Science
Languages : en
Pages : 394
Book Description
This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.
Publisher: Radboud University Press
ISBN: 9083178927
Category : Science
Languages : en
Pages : 394
Book Description
This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.
A Most Incomprehensible Thing
Author: Peter Collier
Publisher: Incomprehensible Books
ISBN: 0957389469
Category : Science
Languages : en
Pages : 276
Book Description
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
Publisher: Incomprehensible Books
ISBN: 0957389469
Category : Science
Languages : en
Pages : 276
Book Description
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
Einstein 1905
Author: John S. Rigden
Publisher: Harvard University Press
ISBN: 0674042751
Category : Science
Languages : en
Pages : 186
Book Description
For Albert Einstein, 1905 was a remarkable year. It was also a miraculous year for the history and future of science. In six short months, from March through September of that year, Einstein published five papers that would transform our understanding of nature. This unparalleled period is the subject of John Rigden's book, which deftly explains what distinguishes 1905 from all other years in the annals of science, and elevates Einstein above all other scientists of the twentieth century. Rigden chronicles the momentous theories that Einstein put forth beginning in March 1905: his particle theory of light, rejected for decades but now a staple of physics; his overlooked dissertation on molecular dimensions; his theory of Brownian motion; his theory of special relativity; and the work in which his famous equation, E = mc2, first appeared. Through his lucid exposition of these ideas, the context in which they were presented, and the impact they had--and still have--on society, Rigden makes the circumstances of Einstein's greatness thoroughly and captivatingly clear. To help readers understand how these ideas continued to develop, he briefly describes Einstein's post-1905 contributions, including the general theory of relativity. One hundred years after Einstein's prodigious accomplishment, this book invites us to learn about ideas that have influenced our lives in almost inconceivable ways, and to appreciate their author's status as the standard of greatness in twentieth-century science.
Publisher: Harvard University Press
ISBN: 0674042751
Category : Science
Languages : en
Pages : 186
Book Description
For Albert Einstein, 1905 was a remarkable year. It was also a miraculous year for the history and future of science. In six short months, from March through September of that year, Einstein published five papers that would transform our understanding of nature. This unparalleled period is the subject of John Rigden's book, which deftly explains what distinguishes 1905 from all other years in the annals of science, and elevates Einstein above all other scientists of the twentieth century. Rigden chronicles the momentous theories that Einstein put forth beginning in March 1905: his particle theory of light, rejected for decades but now a staple of physics; his overlooked dissertation on molecular dimensions; his theory of Brownian motion; his theory of special relativity; and the work in which his famous equation, E = mc2, first appeared. Through his lucid exposition of these ideas, the context in which they were presented, and the impact they had--and still have--on society, Rigden makes the circumstances of Einstein's greatness thoroughly and captivatingly clear. To help readers understand how these ideas continued to develop, he briefly describes Einstein's post-1905 contributions, including the general theory of relativity. One hundred years after Einstein's prodigious accomplishment, this book invites us to learn about ideas that have influenced our lives in almost inconceivable ways, and to appreciate their author's status as the standard of greatness in twentieth-century science.
The Foundations of Spacetime Physics
Author: Antonio Vassallo
Publisher: Taylor & Francis
ISBN: 1000688003
Category : Science
Languages : en
Pages : 298
Book Description
This book provides an up-to-date overview of the foundations of spacetime physics. It features original essays written by world-class experts in the physics and philosophy of spacetime. The foundational questions regarding the origin and nature of spacetime are branching into new and exciting directions. These questions are not restricted to the quantum gravity program but also arise in the context of a well-established theory like general relativity. Against the background of these quick and diverse developments, this volume features a broad range of perspectives on spacetime. Part I focuses on the nature of spacetime in non-quantum theories, such as Newtonian mechanics and relativity. Part II explores some intriguing conceptual implications of developing a quantum theory of spacetime. The Foundations of Spacetime Physics is an essential resource for scholars and advanced students working in philosophy of physics, philosophy of science, and scientific metaphysics.
Publisher: Taylor & Francis
ISBN: 1000688003
Category : Science
Languages : en
Pages : 298
Book Description
This book provides an up-to-date overview of the foundations of spacetime physics. It features original essays written by world-class experts in the physics and philosophy of spacetime. The foundational questions regarding the origin and nature of spacetime are branching into new and exciting directions. These questions are not restricted to the quantum gravity program but also arise in the context of a well-established theory like general relativity. Against the background of these quick and diverse developments, this volume features a broad range of perspectives on spacetime. Part I focuses on the nature of spacetime in non-quantum theories, such as Newtonian mechanics and relativity. Part II explores some intriguing conceptual implications of developing a quantum theory of spacetime. The Foundations of Spacetime Physics is an essential resource for scholars and advanced students working in philosophy of physics, philosophy of science, and scientific metaphysics.
New Challenges and Opportunities in Physics Education
Author: Marilena Streit-Bianchi
Publisher: Springer Nature
ISBN: 3031373871
Category : Science
Languages : en
Pages : 438
Book Description
This book is invaluable for teachers and students in high school and junior college who struggle to understand the principles of modern physics and incorporate scientific methods in their lessons. It provides interactive and multidisciplinary approaches that will help prepare present and future generations to face the technological and social challenges they will face. Rather than using a unidirectional didactic approach, the authors - scientists, philosophers, communication experts, science historians and science education innovators - divide the book into two parts; the first part, “Communicating Contemporary Physics”, examines how new physics developments affect modern culture, while the second part, “Digital Challenges for Physics Learning”, covers physics education research using ICT, plus the experiences of classroom teachers and a range of ideas and projects to innovate physics and STEM teaching.
Publisher: Springer Nature
ISBN: 3031373871
Category : Science
Languages : en
Pages : 438
Book Description
This book is invaluable for teachers and students in high school and junior college who struggle to understand the principles of modern physics and incorporate scientific methods in their lessons. It provides interactive and multidisciplinary approaches that will help prepare present and future generations to face the technological and social challenges they will face. Rather than using a unidirectional didactic approach, the authors - scientists, philosophers, communication experts, science historians and science education innovators - divide the book into two parts; the first part, “Communicating Contemporary Physics”, examines how new physics developments affect modern culture, while the second part, “Digital Challenges for Physics Learning”, covers physics education research using ICT, plus the experiences of classroom teachers and a range of ideas and projects to innovate physics and STEM teaching.