Author: Stanley Jeffers
Publisher: Springer Science & Business Media
ISBN: 9401156824
Category : Science
Languages : en
Pages : 550
Book Description
THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.
The Quantum Theory of Light
Author: R. Loudon
Publisher:
ISBN:
Category :
Languages : en
Pages : 438
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 438
Book Description
The Quantum Theory of Light
Author: Rodney Loudon
Publisher: OUP Oxford
ISBN: 0191589780
Category :
Languages : en
Pages : 454
Book Description
This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.
Publisher: OUP Oxford
ISBN: 0191589780
Category :
Languages : en
Pages : 454
Book Description
This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.
The Electromagnetic Origin of Quantum Theory and Light
Author: Dale Mills Grimes
Publisher: World Scientific
ISBN: 9812565817
Category : Science
Languages : en
Pages : 437
Book Description
Bell anchored the logic chain begun by Einstein, Rosen, and Podolskyand tested by Aspect "et al.," showing that entangled electronsare nonlocal. Feynman showed that free electrons are nonlocal in thatthey travel between any two points using all possible paths.
Publisher: World Scientific
ISBN: 9812565817
Category : Science
Languages : en
Pages : 437
Book Description
Bell anchored the logic chain begun by Einstein, Rosen, and Podolskyand tested by Aspect "et al.," showing that entangled electronsare nonlocal. Feynman showed that free electrons are nonlocal in thatthey travel between any two points using all possible paths.
Quantum Physics of Light and Matter
Author: Luca Salasnich
Publisher: Springer
ISBN: 3319529986
Category : Science
Languages : en
Pages : 249
Book Description
This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body problems, and of atomic quantum optics and entanglement. Finally, two new chapters introduce the finite-temperature functional integration of bosonic and fermionic fields for the study of macroscopic quantum phenomena: superfluidity and superconductivity. Several solved problems are included at the end of each chapter, helping readers put into practice all that they have learned.
Publisher: Springer
ISBN: 3319529986
Category : Science
Languages : en
Pages : 249
Book Description
This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body problems, and of atomic quantum optics and entanglement. Finally, two new chapters introduce the finite-temperature functional integration of bosonic and fermionic fields for the study of macroscopic quantum phenomena: superfluidity and superconductivity. Several solved problems are included at the end of each chapter, helping readers put into practice all that they have learned.
Quantum Physics of Light and Matter
Author: Luca Salasnich
Publisher: Springer
ISBN: 3319051792
Category : Science
Languages : en
Pages : 198
Book Description
The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions. In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory and the Born-Oppenheimer approximation. Finally, in the seventh chapter it is explained the second quantization of the non-relativistic matter field, i.e. the Schrodinger field, which gives a powerful tool for the investigation of many-body problems and also atomic quantum optics. At the end of each chapter there are several solved problems which can help the students to put into practice the things they learned.
Publisher: Springer
ISBN: 3319051792
Category : Science
Languages : en
Pages : 198
Book Description
The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions. In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory and the Born-Oppenheimer approximation. Finally, in the seventh chapter it is explained the second quantization of the non-relativistic matter field, i.e. the Schrodinger field, which gives a powerful tool for the investigation of many-body problems and also atomic quantum optics. At the end of each chapter there are several solved problems which can help the students to put into practice the things they learned.
QED
Author: Richard P. Feynman
Publisher: Princeton University Press
ISBN: 140084746X
Category : Science
Languages : en
Pages : 193
Book Description
Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.
Publisher: Princeton University Press
ISBN: 140084746X
Category : Science
Languages : en
Pages : 193
Book Description
Feynman’s bestselling introduction to the mind-blowing physics of QED—presented with humor, not mathematics Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the public. In this extraordinary book, Feynman provides a lively and accessible introduction to QED, or quantum electrodynamics, an area of quantum field theory that describes the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned Feynman diagrams instead of advanced mathematics, Feynman clearly and humorously communicates the substance and spirit of QED to the nonscientist. With an incisive introduction by A. Zee that places Feynman’s contribution to QED in historical context and highlights Feynman’s uniquely appealing and illuminating style, this Princeton Science Library edition of QED makes Feynman’s legendary talks on quantum electrodynamics available to a new generation of readers.
Einstein and the Quantum
Author: A. Douglas Stone
Publisher: Princeton University Press
ISBN: 0691168563
Category : Science
Languages : en
Pages : 344
Book Description
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.
Publisher: Princeton University Press
ISBN: 0691168563
Category : Science
Languages : en
Pages : 344
Book Description
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.
Theory of Light Hydrogenic Bound States
Author: Michael I. Eides
Publisher: Springer
ISBN: 3540452702
Category : Science
Languages : en
Pages : 274
Book Description
The book describes the modern theory of light hydrogen-like systems. The discussion is based on quantum electrodynamics. Green's functions, relativistic bound-state equations and Feynman diagrams are extensively used. New theoretical approaches are described and explained. The book contains derivation of many theoretical results obtained in recent years. A complete set of all theoretical results for the energy levels of hydrogen-like bound states is presented.
Publisher: Springer
ISBN: 3540452702
Category : Science
Languages : en
Pages : 274
Book Description
The book describes the modern theory of light hydrogen-like systems. The discussion is based on quantum electrodynamics. Green's functions, relativistic bound-state equations and Feynman diagrams are extensively used. New theoretical approaches are described and explained. The book contains derivation of many theoretical results obtained in recent years. A complete set of all theoretical results for the energy levels of hydrogen-like bound states is presented.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 348
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once -- setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Quantum Aspects of Life
Author: Derek Abbott
Publisher: World Scientific
ISBN: 1848162677
Category : Science
Languages : en
Pages : 469
Book Description
A quantum origin of life? -- Quantum mechanics and emergence -- Quantum coherence and the search for the first replicator -- Ultrafast quantum dynamics in photosynthesis -- Modelling quantum decoherence in biomolecules -- Molecular evolution -- Memory depends on the cytoskeleton, but is it quantum? -- Quantum metabolism and allometric scaling relations in biology -- Spectroscopy of the genetic code -- Towards understanding the origin of genetic languages -- Can arbitrary quantum systems undergo self-replication? -- A semi-quantum version of the game of life -- Evolutionary stability in quantum games -- Quantum transmemetic intelligence -- Dreams versus reality : plenary debate session on quantum computing -- Plenary debate: quantum effects in biology : trivial or not? -- Nontrivial quantum effects in biology : a skeptical physicists' view -- That's life! : the geometry of p electron clouds.
Publisher: World Scientific
ISBN: 1848162677
Category : Science
Languages : en
Pages : 469
Book Description
A quantum origin of life? -- Quantum mechanics and emergence -- Quantum coherence and the search for the first replicator -- Ultrafast quantum dynamics in photosynthesis -- Modelling quantum decoherence in biomolecules -- Molecular evolution -- Memory depends on the cytoskeleton, but is it quantum? -- Quantum metabolism and allometric scaling relations in biology -- Spectroscopy of the genetic code -- Towards understanding the origin of genetic languages -- Can arbitrary quantum systems undergo self-replication? -- A semi-quantum version of the game of life -- Evolutionary stability in quantum games -- Quantum transmemetic intelligence -- Dreams versus reality : plenary debate session on quantum computing -- Plenary debate: quantum effects in biology : trivial or not? -- Nontrivial quantum effects in biology : a skeptical physicists' view -- That's life! : the geometry of p electron clouds.