Author: H. Kearney
Publisher:
ISBN:
Category :
Languages : en
Pages : 66
Book Description
The Quadrature of the Circle Proved. With Diagrams and Numerical Formulæ for Practical Purposes
Author: H. Kearney
Publisher:
ISBN:
Category :
Languages : en
Pages : 66
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 66
Book Description
Nineteenth Century Short-title Catalogue: phase 1. 1816-1870
Author:
Publisher:
ISBN:
Category : Books
Languages : en
Pages : 794
Book Description
Publisher:
ISBN:
Category : Books
Languages : en
Pages : 794
Book Description
Catalogue of the Printed Books in the Library of the British Museum
Author: British Library
Publisher:
ISBN:
Category :
Languages : en
Pages : 1144
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1144
Book Description
English Mechanic and World of Science
Author:
Publisher:
ISBN:
Category : Industrial arts
Languages : en
Pages : 558
Book Description
Publisher:
ISBN:
Category : Industrial arts
Languages : en
Pages : 558
Book Description
The National Union Catalog, Pre-1956 Imprints
Author: Library of Congress
Publisher:
ISBN:
Category : Catalogs, Union
Languages : en
Pages : 714
Book Description
Publisher:
ISBN:
Category : Catalogs, Union
Languages : en
Pages : 714
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 972
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 972
Book Description
Learning and Teaching Mathematics using Simulations
Author: Dieter Röss
Publisher: Walter de Gruyter
ISBN: 3110250071
Category : Mathematics
Languages : en
Pages : 258
Book Description
Mathematics course with 60 Java-based interactive mathematic simulations by the author Comprehensive and systematically organized collection of 2,000 Java-based physics simulations All simulations are runnable, and can be accessed both on- and offline Visualization of mathematic relationships Facilitates an experiment-based understanding of problems, including suggestions for your own mathematical experiments Calculation procedures can be adjusted in a variety of ways Introduction to simulation techniques with the EJS (Easy Java Simulation) tool Visual interface for simple and transparent modeling and programming Building block library for programming one's own simulations Quick access to simulations from links embedded in the digital text Mathematics is the language of physics and technology. Yet in the age of computers, mathematic skill is not based on mastery of arithmetic. Rather, it depends on understanding relationships in time and space, and expressing them with precise and clear formulas. In this regard, one cannot rely on the rote memorization of rules and formulas - insight and intuitive understanding are crucial. But how can this understanding be achieved in higher mathematics, which depends on abstract concepts such as complex numbers, real and complex infinite series, infinitesimal calculus, 2, 3, and 4 dimensional functions, conformal maps, vectors, and linear and nonlinear ordinary and partial differential equations? The author takes a highly practical approach to facilitating the insight essential for true learning in mathematics. Students can work directly with the simulation programs, can visualize relationships, and creatively interact with the calculation procedures. Proceeding in textbook fashion, the work makes use of a broad palette of multimedia tools, and features numerous interactive calculation programs for mathematical experimentation. Students merely have to select one of the many predefined examples and set the relevant parameters - and in a flash the results are graphically displayed in 2 or 3 dimensions. In addition, the specific functions used can be changed or even newly formulated according to user preferences. For example, a procedure developed for a fourth degree power function for the numerical calculation of zero points can be adapted for use with another function. Each simulation is accompanied by a detailed description, instructions for use, and numerous suggestions for experimentation. The mathematical simulations are based on the Easy Java Simulation (EJS) programming tool. All of the files developed with EJS are completely open and transparent. The user can even draw on the examples as building blocks for the development his or her own calculation procedures. The appendix contains a short introduction to EJS. The work is enriched by a comprehensive collection of cosmological simulations as well as models from the Open Source Physics project, organized by subject area. Intended as a systematic collection of methods and materials for upper-secondary school teachers and as a course for students of physics and mathematics, the work facilitates hands-on and experiment-driven learning in higher mathematics. The print version contains the electronic text and simulations for offline use. For questions concerning download or online access to the simulations, please contact [email protected].
Publisher: Walter de Gruyter
ISBN: 3110250071
Category : Mathematics
Languages : en
Pages : 258
Book Description
Mathematics course with 60 Java-based interactive mathematic simulations by the author Comprehensive and systematically organized collection of 2,000 Java-based physics simulations All simulations are runnable, and can be accessed both on- and offline Visualization of mathematic relationships Facilitates an experiment-based understanding of problems, including suggestions for your own mathematical experiments Calculation procedures can be adjusted in a variety of ways Introduction to simulation techniques with the EJS (Easy Java Simulation) tool Visual interface for simple and transparent modeling and programming Building block library for programming one's own simulations Quick access to simulations from links embedded in the digital text Mathematics is the language of physics and technology. Yet in the age of computers, mathematic skill is not based on mastery of arithmetic. Rather, it depends on understanding relationships in time and space, and expressing them with precise and clear formulas. In this regard, one cannot rely on the rote memorization of rules and formulas - insight and intuitive understanding are crucial. But how can this understanding be achieved in higher mathematics, which depends on abstract concepts such as complex numbers, real and complex infinite series, infinitesimal calculus, 2, 3, and 4 dimensional functions, conformal maps, vectors, and linear and nonlinear ordinary and partial differential equations? The author takes a highly practical approach to facilitating the insight essential for true learning in mathematics. Students can work directly with the simulation programs, can visualize relationships, and creatively interact with the calculation procedures. Proceeding in textbook fashion, the work makes use of a broad palette of multimedia tools, and features numerous interactive calculation programs for mathematical experimentation. Students merely have to select one of the many predefined examples and set the relevant parameters - and in a flash the results are graphically displayed in 2 or 3 dimensions. In addition, the specific functions used can be changed or even newly formulated according to user preferences. For example, a procedure developed for a fourth degree power function for the numerical calculation of zero points can be adapted for use with another function. Each simulation is accompanied by a detailed description, instructions for use, and numerous suggestions for experimentation. The mathematical simulations are based on the Easy Java Simulation (EJS) programming tool. All of the files developed with EJS are completely open and transparent. The user can even draw on the examples as building blocks for the development his or her own calculation procedures. The appendix contains a short introduction to EJS. The work is enriched by a comprehensive collection of cosmological simulations as well as models from the Open Source Physics project, organized by subject area. Intended as a systematic collection of methods and materials for upper-secondary school teachers and as a course for students of physics and mathematics, the work facilitates hands-on and experiment-driven learning in higher mathematics. The print version contains the electronic text and simulations for offline use. For questions concerning download or online access to the simulations, please contact [email protected].
The Rhind Mathematical Papyrus, British Museum 10057 and 10058
Author:
Publisher:
ISBN:
Category : Mathematics, Egyptian
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Mathematics, Egyptian
Languages : en
Pages : 232
Book Description
Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century
Author: Paolo Mancosu
Publisher: Oxford University Press, USA
ISBN: 0195132440
Category : Matematik
Languages : en
Pages : 290
Book Description
1. Philosophy of Mathematics and Mathematical Practice in the Early Seventeenth Century p. 8 1.1 The Quaestio de Certitudine Mathematicarum p. 10 1.2 The Quaestio in the Seventeenth Century p. 15 1.3 The Quaestio and Mathematical Practice p. 24 2. Cavalieri's Geometry of Indivisibles and Guldin's Centers of Gravity p. 34 2.1 Magnitudes, Ratios, and the Method of Exhaustion p. 35 2.2 Cavalieri's Two Methods of Indivisibles p. 38 2.3 Guldin's Objections to Cavalieri's Geometry of Indivisibles p. 50 2.4 Guldin's Centrobaryca and Cavalieri's Objections p. 56 3. Descartes' Geometrie p. 65 3.1 Descartes' Geometrie p. 65 3.2 The Algebraization of Mathematics p. 84 4. The Problem of Continuity p. 92 4.1 Motion and Genetic Definitions p. 94 4.2 The "Causal" Theories in Arnauld and Bolzano p. 100 4.3 Proofs by Contradiction from Kant to the Present p. 105 5. Paradoxes of the Infinite p. 118 5.1 Indivisibles and Infinitely Small Quantities p. 119 5.2 The Infinitely Large p. 129 6. Leibniz's Differential Calculus and Its Opponents p. 150 6.1 Leibniz's Nova Methodus and L'Hopital's Analyse des Infiniment Petits p. 151 6.2 Early Debates with Cluver and Nieuwentijt p. 156 6.3 The Foundational Debate in the Paris Academy of Sciences p. 165 Appendix Giuseppe Biancani's De Mathematicarum Natura p. 178 Notes p. 213 References p. 249 Index p. 267.
Publisher: Oxford University Press, USA
ISBN: 0195132440
Category : Matematik
Languages : en
Pages : 290
Book Description
1. Philosophy of Mathematics and Mathematical Practice in the Early Seventeenth Century p. 8 1.1 The Quaestio de Certitudine Mathematicarum p. 10 1.2 The Quaestio in the Seventeenth Century p. 15 1.3 The Quaestio and Mathematical Practice p. 24 2. Cavalieri's Geometry of Indivisibles and Guldin's Centers of Gravity p. 34 2.1 Magnitudes, Ratios, and the Method of Exhaustion p. 35 2.2 Cavalieri's Two Methods of Indivisibles p. 38 2.3 Guldin's Objections to Cavalieri's Geometry of Indivisibles p. 50 2.4 Guldin's Centrobaryca and Cavalieri's Objections p. 56 3. Descartes' Geometrie p. 65 3.1 Descartes' Geometrie p. 65 3.2 The Algebraization of Mathematics p. 84 4. The Problem of Continuity p. 92 4.1 Motion and Genetic Definitions p. 94 4.2 The "Causal" Theories in Arnauld and Bolzano p. 100 4.3 Proofs by Contradiction from Kant to the Present p. 105 5. Paradoxes of the Infinite p. 118 5.1 Indivisibles and Infinitely Small Quantities p. 119 5.2 The Infinitely Large p. 129 6. Leibniz's Differential Calculus and Its Opponents p. 150 6.1 Leibniz's Nova Methodus and L'Hopital's Analyse des Infiniment Petits p. 151 6.2 Early Debates with Cluver and Nieuwentijt p. 156 6.3 The Foundational Debate in the Paris Academy of Sciences p. 165 Appendix Giuseppe Biancani's De Mathematicarum Natura p. 178 Notes p. 213 References p. 249 Index p. 267.
General Catalogue of Printed Books
Author: British Museum. Department of Printed Books
Publisher:
ISBN:
Category : English imprints
Languages : en
Pages : 518
Book Description
Publisher:
ISBN:
Category : English imprints
Languages : en
Pages : 518
Book Description